NAVSHIPS 900,353

INSTRUCTION BOOK for

 NAVY MODELS REL, RBL-1, RBL-2 RADIO RECEIVING EQUIPMENTS onthipurtuation. theater demand zoa uncassimact.

> NATIONAL COMPANY, INC. MILDEN, MASSACHUSETTS, USA.

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	
			CHANGE IN EFFECT

NAVY DEPARTMENT
BUREAU OF SHIPS WASHINGTON 25, D. C.

1. NAVSHIPS 900,353 is the instruction book for Radio Receiving Equipments, Navy Models RBL/RBL-1/2. It is in effect upon receipt.
2. NAVSHIPS 900,353 is a RESTRICTED non-registered publication and shall be hantled, tranpported, and safepuarded in accordance with U.S. Navar Regulations. When superseded by a later edition, thls publication shall be destroyed.

Any person known to be in the service of the United States and persons of unioubted loyalty and diecretion who are cooperating in Government work may have ccess to this publication. however, information contained herein shall not be communicated to the public or th the press.
4. This document contains information affecting the ational defense of the United States within the meaning of the Espionage Act, 50 U.S.C., 31 and 32 , as amended. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law. (ART. 76 U.S.N. REGS-1920).
5. Extracte from this publication may be made to facilitate the preparation of other Navy instruction books and handbooks.
6. Copies of this publicatio
the nearest Electronics Offlcer.
E. L. COCHRANE

Chief of Bureau

RECORD OF CORRECTIONS MADE

CHANGE NO.	DATE	SIGNATURE OF OFFICER MAKING CORRECTION	

TABLE OF CONTENTS

rage No.
List of Effective Pages A
Promulgating Letter B
Correction Page C
Table of Contents i-ii
List of Photographs and Drawings iii
Contractual Guarantee iv
Report of Failure iv
Installation Record iv
Replacement Material iv
Destruction iv-v
Safety and Warning Notices v
Section I. General Description
Paragraph

1. General Description and Function $1-1$
2. Reference Data $1-1$
3. Equipment Supplied $1-1$
4. Description of Major Units $1-2$
A. Type CNA-46161 Radio Receiver $1-2$
5. Description of Type CNA-10124 Mounting Base $1-2$
6. Technical Summary $1-2$
Section II. Installation
Paragraph
7. Unpacking Procedure 2.0
8. Preliminary Tests $2-0$
9. Location and Mounting $2-0$
10. External Connections 2.0
a. Power Connections 2-0
b. Antenna Connections $2-2$
c. Output Connections $2-2$
11. Installation Adjustments $2-2$
Section III. Operating Instructions
Paragrapb
12. Starting Equipment 3-1
13. Controls 3-2
14. C.W. Reception 3-2
15. M.C.W. Reception 3-3
16. Emergency Battery Operation 3-3
17. Failures During Operation 3-3
Section IV. Theory of Operation
Paragraph
18. Circuit Details $4-0$
19. Principles of Operation $4-0$
a. 1st R.F. Stage $4-0$
b. 2nd R.F. Stage 4-0
c. Detector Circuit $4-0$
d. Similarities between Tuning Bands 4-0
e. Audio Circuits $4-1$

TABLE OF CONTENTS (Continued)

Paragrapb
f. Output Limiter $4-1$
g. Output Stage 4-1
h. Power Supply 4-1
Section V. Maintenance

1. Maintenance Schedule 5-0
2. General Trouble Location $5-0$
3. Location of faulty Circuits 5-0
a. General 5-0
b. Voltage Measurements $5-0$
c. Resistance and Continuity Checks 5-0
d. Replacement of Band Switches 5-1
4. Technical Information 5-1
5. Performance Requirements 5-2
a. Sensitivity Check 5-2
b. Method $5-2$
6. General Alignment Data 5-2
7. Preparation for Alignment 5-3
8. Alignment Errors 5-4
Section VI. Parts and Spare Parts Lists
Table I List of Major Units for Models RBL, RBL-1, and RBL-2
6-1
Radio Receiving Equipment
$6-2$
Table II Parts List by symbol designation iii
Table III Parts List by Navy Type Designations for Models RBL, RBL-1 and RBL-2 Radio Receiving Equipment 5-13Table IV Spare Parts List by Navy Type Designations for Models RBL, RBL-1 and RBL-2 Radio ReceivingEquipment6-15
Table V Color Codes 6-20
Table VI List of Manufacturers 6-21

LIST OF PHOTOGRAPHS AND DRAWINGS

Figure

Page No.
Section I. General Description
1-1 Front Perspective View of RBL Equipment .. 1-0
Section II. Installation
2-1 External Interconnection Diagram .. 2-1
Section III. Operating Instructions
3-1 Front Panel Controls-Type CNA-46161 Radio Receiver .. 3-1
Section IV. Theory of Operation
4-1 Block Diagram of Type CNA-46161 Radio Receiver .. 4-0
Section V. Maintenance
5-1 Trouble Location Chart .. 5-1
5-2 Sensitivity Test Control Settings .. 5-2
5.3 Typical Noise and Sensitivity Readings ... 5.2

5-4 Alignment Frequencies and Trimmer Adjustments .. 5-3
5-5 Alignment Connections .. 5-4
5-6 Trimmer Capacitor Locations ... 5-5
5-7 Tube Socket Voltages and Currents .. 5-7
5-8 Tube Base Diagrams ... 5-7
5-9 Tube Socket To Chassis Resistances .. 5-8
5-10 Inductor and Transformer Resistances ... 5-8
5-11 Low Pass Filter Terminal Wiring .. 5-9
5-12 Procedure for Removal of Band Switch Section ... 5-10
5-13 Frequency-Kilocycles Vs. Linear Dial Scale Divisions .. 5-11
5-14 C.W. Sensitivity Graph .. 5-12
5-15 Overall Selectivity Graph .. 5-13
5-16 Overall Audio Fidelity ... 5-14
5-17 Resonant Overload Characteristics .. 5-15
5-18 Output Limiter Characteristics .. 5-16

Section VI.
6-1 Parts and Spare Parts Lists... 6-1
6-20 Table V Color Codes... 6-20

Section VII. Photographs and Drawings
7-1 Schematic Wiring Diagram of Type CNA-46161 Radio Receiver ...7-1, 7-2
7-2 Coil Switch Diagram-Type CNA-46161 Radio Receiver .. 7-3
7.3 R.F. Coil Schematic Diagrams ... 7-4

7-4 Front View of Type CNA-46161 Radio Receiver ... 7-5
7.5 Top View of Type CNA-46161 Radio Receiver ... 7-6

7-6 Bottom View of Type CNA-46161 Radio Receiver ... 7.7
7-7 Rear View of Type CNA-46161 Radio Receiver .. 7-8
7-8 Top View of Type CNA-10124 Mounting Base ... 7.9
7-9 Bottom View of Type CNA-10124 Mounting Base .. 7-10
7-10 Typical High Frequency and Low Frequency Coils ... 7-11
7-11 Internal View of High Pass Filter .. 7-12
7-12 Internal View of Low Pass Filter .. 7-13
7-13 Outline Drawing of Type CNA-46161 Radio Receiver .. 7-14
7-14 Outline Drawing of Type CNA-10124 Mounting Base .. 7-15

CONTRACTUAL GUARANTEE

The equipment including all parts and spare parts, except vacuum tubes, batteries, rubber and material normally consumed in operation, is guaranteed for a period of one year from the date of delivery of the equipment to and acceptance by the Government with the understanding that all such items found to be defective as to material, workmanship or manufacture will be repaired or replaced, f.o.b. any point within the continental limits of the United States designated by the Government; without delay and no expense to the Government; provided that such guarantee will not obligate the Contractor to make repair or replacement of any such defective items unless the defect appears within the aforementioned period and the Contractor is notified thereof in writing within a reasonable time and the defect is not the result of normal expected shelf life deterioration.

To the extent the equipment, including all parts and spare parts, as defined above, is of the Contractor's design or is of a design selected by the Contractor, it is also guaranteed, subject to the foregoing conditions, against defects in design with the understanding that if ten per cent (10%) or more of any such said item, but not less than two of any such item, of the total quantity comprising such item furnished under the contract, are found to be defective as to design, such item will be
conclusively presumed to be of defective design and subject to one hundred per cent (100%) correction or replacement by a suitably redesigned item.
All such defective items will be subject to uitimate return to the Contractor. In view of the fact that normal activities of the Naval Service may result in the use of equipment in such remote portions of the world or under such conditions as to preclude the return of the defective items for repair or replacement without jeopardizing the integrity of Naval Communications, the exigencies of the Service, therefore, may necessitate expeditious repair of such items in order to prevent extended interruption of communications. In such cases the return of the defective items for examination by the Contractor prior to repair or replacement will not be mandatory. The report of a responsible authority, including details of the conditions surrounding the failure, will be acceptable as a basis for affecting expeditious adjustment under the provisions of the contractual guarantee.

The above one year period will not include any portion of time the equipment fails to perform satisfactorily due to any such defects, and any items repaired or replaced by the Contractor will be guaranteed anew under this provision.

REPORT OF FAILURE

Report of failure of any part of this equipment, during its service life, shall be made to the Bureau of Ships in accordance with current instruction. The report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 67 of the "Bureau of Ships Manual," or superseding instructions.

INSTALLATION RECORD

Date of Contract 8 September 1941
10 March 1942
30 April 1942

Serial Number of Equipment.
Date of acceptance by the Navy.
Date of Delivery to contract designation
Date of completion of installation.
Date placed in service.

REPLACEMENT MATERIAL

All requests or requisitions for replacement material should include complete descriptive data covering the part desired, in the following form:

1. Name of part desired.
2. Federal Stock Number (if assigned).
3. Navy Type Number (if assigned) (including prefix and suffix as applicable.)
4. Commercial designation.
5. Model designation (including suffix) of equipment in which used.
6. Navy Type Designation (including prefix and suffix where applicable) of major unit in which part is used.
7. Contract, purchase order, requisition, etc., under which the equipment was procured.
8. Circuit symbol designation of part.
9. (a) Navy Drawing and/or specification number (include part or group number)
(b) Manufacturer's drawing or specification's number. (Include part or group number.)
10. Rating or other descriptive data.

DESTRUCTION OF

ABANDONED MATERIEL IN THE COMBAT ZONE

In case it should become necessary to prevent the capture of this equipment, and when ordered to do so, DESTROY IT SO THAT NO PART OF IT CAN BE SALVAGED, RECOGNIZED, OR USED BY THE ENEMY. BURN ALL PAPERS AND BOOKS.

Means:

1. Explosives, when provided.
2. Hammers, axes, sledges, machetes, or whatever heavy object is readily available.
3. Burning by means of incendiaries such as gasoline, oil, paper or wood.
4. Grenades and shots from available firearms.
5. Burying all debris, or disposing of it in streams or other bodies of water, where possible and when time permits.

Procedure:

1. Obliterate all identifying marks. Destroy nameplates and circuit labels.
2. Demolish all panels, castings, switch and instrument boards.
3. Destroy all controls, switches, relays, connections and meters.
4. Rip out all wiring and cut interconnections of electrical equipment. Smash gas, oil and water cooling system in gas engine generators, etc.
5. Smash every electrical or mechanical part, whether rotating, moving or fixed.
6. Break up all operating instruments such as keys; phones, microphones, etc.
7. Destroy all classes of carrying cases, straps, containers, etc.
8. Bury or scatter all debris.

DESTROY EVERYTHING

SAFETY AND WARNING NOTICES
THIS EQUIPMENT EMPLOYS VOLTAGES WHICH ARE DANGEROUS AND MAY BE FATAL IF CONTACTED BY OPERATING PERSONNEL. EXTREME CAUTION SHOULD BE EXERCISED WHEN WORKING WITH THE EQUIPMENT.

THE ATTENTION OF OFFICERS AND OPERATING PERSONNEL IS DIRECTED TO CHAPTER 67 OF BUREAU OF SHIPS MANUAL OR SUPERSEDING INSTRUCTIONS ON THE SUBJECT OF "RADIO-SAFETY PRECAUTIONS TO BE OBSERVED."

AN APPROVED POSTER ILLUSTRATING THE RULES FOR RESUSCITATION BY THE PRONE PRESSURE METHOD SHALL BE PROMINENTLY DISPLAYED IN EACH RADIO, RADAR OR SONAR ENCLOSURE. POSTERS MAY BE OBTAINED UPON REQUEST TO THE BUREAU OF MEDICINE AND SURGERY.

Figure 1-1 - Front Perspective View of RBL Equipment

SECTION I

GENERAL DESCRIPTION

1. GENERAL DESCRIPTION AND FUNCTION.

a. The Model RBL Radio Receiving Equipment utilizes a tuned cadio frequency circuit for the reception of radio telephone (M.C.W.) and telegraph signals (C.W. or I.C.W.) over a frequency range of 15 to 600 kilocycles continuously tunable in six bands.
b. The receiver is provided with a shockproof mounting base making it suitable for table mounting. All controls necessary for operation are mounted on
the front panel while plugs and terminals for external connections are located at the rear of the receiver.
c. The power supply required for operation of the receiver may be either 115 volts, $50-60$ cycles for A.C. operation or a six-volt heater battery and a $135-$ volt B battery for emergency battery operation.
d. This instruction book is applicable to the models of the RBL series which includes only RBL, RBL-1, and RBL-2 Radio Receiving Equipments.
2. REFERENCE DATA.
a. NOMENCLATURE.

Equipment	Receiver Navy Type	Mounting Base Navy Type	Contract	Date
RBL	CNA-46161	CNA-10124	NOs-91471	8 September 1941
RBL-1	CNA-46161	CNA-10124	NXs-456	10 March 1942
RBL-2	CNA-46161	CNA-10124	NXs-4683	30 April 1942

b. CONTRACTOR. - National Company, Inc., Malden, Massachusetts.
c. COGNIZANT INSPECTOR. - INM, Boston, Massachusetts.
d. FREQUENCY RANGE. - 15 Kcs . to 600 Kcs . in six tuning bands.
e. TYPES OF RECEPTION. - C.W. or I.C.W. from 15 Kcs. to 600 Kcs.; M.C.W. from 200 Kcs. to 600 Kcs.
f. C.W. BEAT NOTE. - 750 c.p.s. by autodyne method.
g. RADIATION. - Less then 400 micro-microwatts.
h. OUTPUT IMPEDANCE. - 600 ohms.
i. POWER SOURCES.
(1) A.C. OPERATION: 115 volts, 60 cycles, one phase. CURRENT DRAIN: . 4 A. at 115 volts.
(2) BATTERY OPERATION: 6-volt heater battery, 135 -volt B battery. CURRENT DRAIN: 2.2 A at 6 volts, 30 ma . at 135 volts.
j. SHIPPING CONTAINERS. - One crate per complete equipment. Weight, Receiver and Spare Parts, crated - 225 lbs. Cubic Volume, crated - $9.7 \mathrm{cu} . \mathrm{ft}$.
k. VACUUM TUBES. - Three 6SK7, One 6SG7, One 6H6, One 6K6GT/G, One 5U4G.

3. EQUIPMENT SUPPLIED.

a. The following table lists the equipment comprising a complete receiving equipment and applies to either RBL, RBL-1 or RBL-2 Equipments. Batteries
and cables are not supplied by the contractor. For quantities of Stock Spares see Parts List.

EQUIPMENT SUPPLIED

Quantity	Symbol Series	$\begin{aligned} & \text { Name of } \\ & \text { Unit } \end{aligned}$	Navy Type Desig.	Overall Dimensions A: Crated B: Uncrated Height Width		S	Volume Cu. Ft. Weight A: Crated A: Crated B: Uncrated B: Uncrated			
1	101-199	RBL Radio Receiver	CNA-46161	$\begin{aligned} & \text { A: } 17-1 / 2^{\prime \prime} \\ & \text { B: } 10-31 / 32^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { x 42-1/2" } \\ & \text { x } 17-3 / 16^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { x } 22-1 / 2^{\prime \prime} \\ & \text { x } 16-5 / 8^{\prime \prime} \end{aligned}$		$\begin{aligned} & 9.7 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \text { A: } 225 \\ & \text { B: } 75 \end{aligned}$	lbs. lbs.
1	201-299	Mounting Base	CNA-10124	$\begin{aligned} & \text { A: Crated wit } \\ & \text { B: } 2-9 / 16^{\prime \prime} \end{aligned}$	th Receiver x 17-17/32	$\text { x } 16-5 / 16^{\prime \prime}$	B:	. 04	B: 5-1	lbs.
1		Equipment Spare Parts		$\begin{aligned} & \text { A: Crated wi } \\ & \text { B: } 6-1 / 2^{\prime \prime} \end{aligned}$	th Receiver $\times 19^{\text {" }}$	x 1010	B:	. 7	B: 25	lbs.
*		Stock Spare	Parts	$\begin{aligned} & \text { A: } 10-3 / 4^{\prime \prime} \\ & \text { B: } 9-1 / 2^{11} \end{aligned}$	$\begin{aligned} & \times 23^{\prime \prime} \\ & \times 19^{\prime \prime} \end{aligned}$	$\begin{aligned} & \times 16^{\prime \prime} \\ & \times 13^{\prime \prime} \end{aligned}$		2.4	$\begin{aligned} & \text { A: } 82 \\ & \text { B: } 67 \end{aligned}$	lbs. lbs.

[^0]
4. DESCRIPTION OF MAJOR UNITS.

a. TYPE CNA-46161 RADIO RECEIVER. - The Type CNA-46161 Radio Receiver is a seven-tube, tuned radio frequency receiver covering a continuous frequency range of 15 to 600 kilocycles in six working bands. The receiver is enclosed within a single cop-per-plated steel cabinet, having a black wrinkle finish designed for top of table mounting. The chassis and other steel parts mounted on it are copper-plated and given a gray enamel finish. The circuit employed on all bands is shown in Figure 7-1, Schematic Wiring Diagram, and Figure 7-2, Coil-switch Diagram, and comprises two stages of radio frequency amplification, a regenerative detector, a resistance coupled first audio stage, audio filters arranged to permit a choice of two possible cut-off frequencies, an adjustable audio limiter, and a resistance coupled audio output stage. The audio output is available at a phone jack and at a terminal strip located at the rear of the receiver. A built-in A.C. power supply provides the proper filament and D.C. voltages required by the various circuits of the receiver. A power socket mounted on the rear of the receiver permits connections to be made to an emergency battery power supply.
b. FREQUENCY RANGE. - The frequency range of the receiver is covered in six working bands as follows:

Band A	$15-25$ Kilocycles
Band B	$25-45$ Kilocycles
Band C	$45-80$ Kilocycles
Band D	$80-155$ Kilocycles
Band E	$155-310$ Kilocycles
Band F	$310-600$ Kilocycles

c. TUNING DIAL. - The Type CNA-46161 Radio Receiver has astationary dial scale calibrated in kilocycles to conform with the frequency coverage of the six bands. A moving pointer indicates the frequency setting. The dial is calibrated with the autodyne detector adjusted for zero beat against accurate C.W. signals. The band in use is indicated by a band indicator dial, which turns with the band selector knob. In addition to the frequency calibrated scales, an auxiliary numerical scale is employed which in conjunction with a vernier dial may be read to one division in one thousand when logging signals.
d. VACUUM TUBE COMPLEMENT. - The tubes employed in the Type CNA-46161 Radio Receiver are as follows:

Symbol	Navy Type	Function
V-101	-6SK7	First R.F. Amplifier
V-102	-6SK7	Second R.F. Amplifier
V-103	-6SK7	Regenerative Detector
V-104	-6SG7	First Audio Amplifier
V-105	-6H6	Audio Limiter
V-106	-6K6GT/G	Power Audio Amplifier
V-107	-5U4G	Rectifier

e. GENERAL CHARACTERISTICS. - The Type CNA-46161 Radio Receiver is designed primarily for the reception of pure C.W. and M.C.W. radio telegraph signals. The high R.F. and A.F. selectivity of the receiver results in improved signal-to-noise ratio for C.W. reception but due to sideband cutting and the resulting distortion, voice modulated reception is limited to the frequency range of 200 to 600 Kc .

f. FREQUENCY AND GAIN STABILITY.

(1) Voltage variations of plus or minus 10 per 1-2
cent of the 115 -volt power source result in a frequency shift of the 1000 c.p.s. autodyne beat note of less than 50 c.p.s. The variation in overall gain as a result of the voltage variation and frequency shift does not exceed three db.
(2) The frequency variation per degree Centigrade for variation of ambient temperature over a range of $0^{\circ} \mathrm{C}$. to $+50^{\circ} \mathrm{C}$. $\left(32^{\circ} \mathrm{F}\right.$. to $122^{\circ} \mathrm{F}$.) is less than $50 \mathrm{c} . \mathrm{p} . \mathrm{s}$. The variation in overall gain under these temperature conditions does not exceed six db.
(3) Humidity changes up to a maximum relative humidity of 95 per cent at a constant temperature of $40^{\circ} \mathrm{C}$. $104^{\circ} \mathrm{F}$.) result in an oscillator frequency variation of less than one per cent and a variation in overall gain of not more than six db.

5. DESCRIPTION OF TYPE CNA-10124 MOUNTING BASE.

a. The Type CNA- 10124 Mounting Base is a cradle or framework designed to support the CNA-46161 Radio Receiver and protect it from vibration or shock. The mounting base is fitted with four shock mounts which consist of rubber insulated bushings, the bushings serving to pass the mounting bolts for the base. Thumb screws at thefront and rear corners of the base serve to secure the receiver to the base. The CNA-10124 Mounting Base is shown in Figures 7-8 and 7-9, and the mounting dimensions are given in Figure 7-14.

6. TECHNICAL SUMMARY.

a. FREQUENCY RANGE. - 15-300 Kilocycles.
b. TUNING BANDS. - Six bands as follows:

Band A	$15-25$ Kilocycles
Band B	$25-45$ Kilocycles
Band C	$45-80$ Kilocycles
Band D	$80-155$ Kilocycles
Band E	$155-310$ Kilocycles
Band F	$310-600$ Kilocycles

c. DIAL.
(1) FREQUENCY SCALE. - Fixed type with moving pointer; six scales calibrated in kilocycles.
(2) NUMERICAL SCALE: - 1000 divisions with vernier dial.
d. TYPE OF RECEPTION. - C.W. or I.C.W. from 15 Kcs . to 900 Kcs .: M.C.W. from 200 Kcs . to 600 Kcs .
e. POWER OUTPUT. - 300 milliwatts undistorted audio into a 600 -ohm resistive load.

f. C.W. SENSITIVITY.

(1) SHARP. -5 microvolts or less to give Standard Output of 6 milliwatts.
(2) BROAD. - R. F. input of 10 microvolts or less for a Standard Output of 6 milliwatts.
g. SELECTIVITY AT 6 DB. DOWN.

BAND	FREQ. (KC.)		BANDWIDTH (KC.)
F	460		4.5
E	220	2.5	
D	120	1.5	
C	65		1.0
B	40		1.0
A	20		0.6

h. AUDIO FIDELITY.
(1) SHARP. $-500 \mathrm{c} . \mathrm{p} . \mathrm{s}$. band pass at 20 db . down, peak response at $750 \mathrm{c} . \mathrm{p} . \mathrm{s}$.
(2) BROAD. -3500 c.p.s. band pas6 at 20 db . down, peak response at 1100 c.p.s.
i. C.W. BEAT NOTE. - 750 c.p.s. by autodyne method.
j. RADIATION. $=$ Less than 400 micro-microwatts.
k. LIMITER CHARACTERISTICS. - 300. mw. audio output with minimum limiter action. 1. mw. audio output with maximum limiter action.

1. FREQUENCY AND GAIN STABILITY.

Condition
(1) Line Voltage Change 115 V. $\pm 10 \%$
(2) Temp. Change $\left(0^{\circ} \mathrm{C}\right.$. to $+50^{\circ} \mathrm{C}$.) $\left(32^{\circ} \mathrm{F}\right.$. to $122^{\circ} \mathrm{F}$.)
(3) Humidity Change $30-95 \%$ at Temp. of $+40^{\circ} \mathrm{C}$. (1040 F.)

Freq. Stability Gain Variation
50 c.p.s. Change in 3 db . 1000 c.p.s. beat note

50 c.p.s. Change in 6 db . 1000 c.p.s. beat note

Less than 1\% 6 db .
Osc. Freq. Change
m. LOW PASS FILTER IMPEDANCE. - Input/ Output 50,000/50,000 Ohms.
n. HIGH PASS FILTER IMPEDANCE. - Input/ Output $50,000 / 50,000$ Ohms.
o. AUDIO OUTPUT IMPEDANCE. - 6000 hms .
p. ANTENNA CHARACTERISTICS. - Antennas
having capacities of 150 to 2000 mmf . may be used.
q. POWER SOURCES.
(1) A.C. OPERATION. - 115 Volts, 60 Cycles, one phase. Current Drain . 4 A. at 115 Volts.
(2) BATTERY OPERATION. - Six-volt heater battery, 135 -volt B Battery. Current Drain 2.2 A. at 6 Volts, 30 ma . at 135 Volts.

SECTION II

INSTALLATION

1. UNPACKING PROCEDURE.

a. The major units and spare parts of the Model RBL Equipment are packed in a single wooden crate. The recommended procedure to employ in unpacking the ecuipment is as follows:

STEP 1. Place the packing crate so that the identification stenciling is uppermost.

STEP 2. Remove the side or cover of the packing crate which is now uppermost. This cover is secured by nails and an ordinary nail puller or claw hammer may be employed.

STEP 3. Remove the receiver by carefully turning the crate upside down and lifting the crate off. The receiver is protected from scratching or marring
by the cardboard carton in which it is enclosed.
STEP 4. Remove the receiver from the cardboard carton.

STEP 5. Release the spare parts container from the crate by removing the retaining cleats with a pry bar or claw hammer.

STEP 6. Remove the spare parts container from the crate.

STEP 7. Inspect the parts and controls of the receiver for any damage incurred during shipment.

STEP 8. The packing crate, cardboard carton and spare parts container should be saved if. the equipment is to be repacked and reshipped.

2. PRELIMINARY TEST.

a. Before permanently mounting the CNA-46161 Radio Receiver, a preliminary test should be made after making external connections as shown in the interconnections diagram. A test oscillator or trans-
mitter signals may be used to provide test signals. For this test, set the controls of the CNA-46161 Radio Receiver as follows:
Control Symbol
S-102, S-103
S-106
$\mathrm{R}-134$
$\mathrm{~S}-105$
$\mathrm{R}-120$
$\mathrm{R}-127$
$\mathrm{C}-104$
$\mathrm{C}-109$
$\mathrm{~S}-107$
$\mathrm{C}-103$

Control	Setting
POWER Switch	ON
AUDIO Switch	BROAD
R.F. Gain	10
OUTPUT LIMITER Switch	OFF
OUTPUT LEVEL	10
REGENERATION	Below Oscillation
ANT. COMPENSATOR	For Maximum Gain
R.F. TRIMMER	For Maximum Gain
BAND SELECTOR	To Desired Band
MAIN TUNING	To Signal Frequency

b. After the tubes have warmed up, background noise should be heard and M.C.W. signals from the test oscillator or transmitter may be tuned in. The operation of the receiver should be checked at the high and low ends of each of the six bands. For C.W. signals, advance REGENERATION control to point of oscillation. Check low-pass filter by switching AUDIO switch to SHARP, noise and high audio frequencies should be attenuated and C.W. signals should peak at about 750 cycles per second. Turn the OUTPUT LIMITER switch ON and retard OUTPUT LEVEL control toward 0, which should cause noise peaks to be held to the same audio level as any modulated signals being received. Repeat these tests with the receiver connected for battery operation. Typical performance data is shown in Figure 5-2.

3. MOUNTING.

a. The location of the CNA-46161 Radio Receiver should be selected so as to permit short antenna and power connections when this is practical. The Type CNA-10124 Mounting Base should be fastened to the operating table, allowing a minimum clearance of two and one-half inches at the rear to permit removal and replacement of fuses and plugs. Mounting centers and overall dimensions are shown in Figure 7-14. The
receiver should be secured to the mounting base by means of the thumb screws provided on the front and rear corners of the mounting base.

4. EXTERNAL CONNECTIONS.

a. POWER CONNECTIONS.
(1) A.C. POWER CONNECTIONS. - For A.C. operation store the D.C. CABLE CONNECTOR plug P-102 in the DUMMY SOCKET J-102; connect the A.C. LINE PLUG P-101 to a 115 -volt, $50-60$ cycle A.C. power source; connect the A.C. SUPPLY CONNECTOR PLUG P-102 to the POWER SOCKET J-103. Plug P-103 in conjunction with jack J-103 completes the necessary circuits for A.C. operation.
(2) BATTERY POWER CONNECTIONS. - For D.C. operation store the A.C. SUPPLY CONNECTOR PLUG P-103 in the DUMMY SOCKET J-102, thus breaking A.C. connections, and connect the D.C. CABLE CONNECTOR PLUG P-102 to the POWER SOCKET J-103, which completes the necessary circuits for D.C. operation. Connect the battery cable to a sixvolt D.C. source for the heater supply and a 135 -volt D.C. source for the B supply. Battery connections are shown on the interconnection diagram.

Figure 2-1 - External Interconnection Diagranı
b. ANTENNA CONNECTIONS. - The antenna input circuit is arranged so as to be suitable for use with either a relatively high impedance unbalanced feed line or a simple antenna-ground combination.

The antenna input terminals are located at the left-hand side of the receiver chassis when viewed from the rear. These consist of insulated terminal board E-102 on which are mounted the long and short antenna posts; the right-hand terminal is for use with a long antenna; for short antennas the left-hand terminal should be used; to the left of E-102 is located the ground post E-103.

It is desirable to permanently ground the equipment by means of a ground connection between the ground post E-103, and a cold water pipe or other metal structure having a large surface in contact with moist earth or water.

When using an unbalanced transmission line, the ground side of the line should be connected to the ground post and the high side of the line to the long antenna post. In order to determine whether an antenna is electrically long or short, it should be connected to the short antenna terminal and checked by means of the ANTENNA COMPENSATOR. If the first R.F. stage cannot be resonated on all bands, the antenna should be tried on the long antenna terminal. Antenna length is not critical although at least fifty feet exclusive of lead-in should be used.
c. OUTPUT CONNECTIONS. - The secondary of the audio output transformer is terminated at the OUT-

PUT terminals E-101 located at the right-hand rear of the receiver. Connected in parallel with the OUTPUT terminals is headphone jack J-101 which is mounted on the front panel. An amplifier or other equipment may be connected to the OUTPUT terminal strip. The total impedance of the output load should be 600 ohms. Since the output transformer secondary is of the balanced type having a grounded center tap, no other ground connection should be made to either side of the audio line.

5. INSTALLATION ADJUSTMENTS.

a. When installation of the receiver is completed, the operation of the ANTENNA COMPENSATOR control should be checked. Connect the antenna to the short antenna post; if the first R.F. stage cannot be tuned to resonance with the ANTENNA COMPENSATOR control, the antenna should be tried on the long antenna terminal. It may be necessary to shorten a very -long antenna in order to obtain resonance.
b. The mechanism used to turn the main tuning capacitor assembly may be made to turn more or less freely as desired by adjustment of the friction introduced into the mechanism. The desired adjustment of mechanism friction is made by proper placement of the main tuning knob on its shaft. The main tuning knob is secured to its shaft by means of set screws. Adjustment of these set screws allows the knob to be moved closer to the receiver and then secured on its shaft, thus increasing the mechanism friction and vice versa.

SECTION III
OPERATING INSTRUCTIONS FOR CNA-46161 RADIO RECEIVER

Figure 3-1 - Front Panel Controls - Type CNA-46161 Radio Receiver

Navy Type CNA-46161 Radio Receiver is a unit of RBL, RBL-1 and RBL-2 Equipments.

1. STARTING EQUIPMENT.

Control
Symbol
S-102
S-106
R-134
S-105
R-120
R-127
C-104
C-109
S-107
C-103

```
Control
POWER Switch
AUDIO Switch
R.F. GAIN
OUTPUT LIMITER Switch
OUTPUT LEVEL REGENERATION ANT. COMPENSATOR R.F. TRIMMER BAND SELECTOR MAIN TUNING
```

mbol
a. The controls used to start and operate the CNA46161 Radio Receiver and settings normally used for M.C.W. reception are shown in the following table:

Setting

[^1]b. For C.W. signals advance REGENERATION control to point of oscillation; adjust tuning 750 c.p.s. higher than the signal, at which point the beat note provides maximum response (AUDIO switch at SHARP.) Toturn off POWER turn POWER switch counterclockwise to OFF.

2. CONTROLS.

a. The functions of the various controls and their adjustment for efficient reception of C.W. or M.C.W. signals is described in the following paragraphs. All switches and controls (with the exception of the main tuning dial and the band selector knob) of the Type CNA-46161 Radio Receiver are identified by etched panel plates or dial scales. The symbol numbers in the following paragraphs of this Section refer to the Schematic Diagrams and to the Parts Lists.
(1) The POWER SWITCH (S-102) is located at the left-hand side of the receiver panel near the top. Turning this control to the maximum clockwise position completes the necessary supply circuits and places the receiver in operation.
(2) The main tuning dial is located at the center of the front panel of the receiver. The dial scale is calibrated in accordance with the frequency response of the six bands. In addition to the frequency calibrated scales, an auxiliary numerical scale is provided. Signals may be simultaneously logged on the zero to 1000 numerical scale which is direct reading within one division by means of the zero to 100 vernier dial and its fixed pointer.
(3) The band selector knob is located near the bottom of the front panel at the center. The knob must be rotated approximately one sixth of a turn to change from one band to an adjacent band. The band in use is indicated by the pointer attached to the band selector knob. A positive detent insures proper positioning of the band selector switch contacts.
(4) Directly beneath the power switch is located the AUDIO bandwidth control switch. In the sharp position the pass band is approximately 500 cycles wide at 20 db . down with the peak response occurring at 750 cycles per second. In the broad position the pass band is approximately 3500 cycles wide at 20 db . down with the peak response occurring at 1100 cycles per second.
(5) The REGENERATION control is located directly below the AUDIO bandwidth control. Clockwise rotation of this control increases the regeneration in detector circuit. The detector tube may be made to oscillate when the REGENERATION control is turned sufficiently in the clockwise direction thus providing a means for heterodyne detection of C.W. radio telegraph signals.
(6) The R.F. GAIN control is located to the left of the REGENERATION control. Clockwise rotation of this control increases the amplification of the two R.F. amplifier tubes V-101 and V-102.
(7) The ANTENNA COMPENSATOR control is located at the right of the band selector control. This control is used to compensate for antenna capacity, which tends to detune the first R.F. stage. It should be adjusted for maximum amplification.
(8) The R.F. TRIMMER control is located to the right of the ANTENNA COMPENSATOR. The function of this control is to compensate for unavoidable tracking errors in the second R.F. stage and should
be adjusted for maximum amplification.
(9) The OSCILLATION TEST button is located between the ANTENNA COMPENSATOR and R. F. TRIMMER. In the absence of a received signal, this control is useful in determining whether or not the detector is oscillating. The detector slides in and out of oscillation so smoothly that it is often difficult to determine whether or not it is oscillating. If a click is heard in the headphones when the OSCILLATION TEST button is pressed and another click observed when it is released, this indicates that the detector is in the oscillating condition.
(10) The OUTPUT LIMITER control is located directly above the ANTENNA COMPENSATOR control. In the OFF position the limiter circuits are inoperative. In the ON position the limiter circuits are operative and limit all audio voltage peaks to a definite maximum value determined by the setting of the OUTPUT LEVEL control. The type of limiter employed limits both alternations of an audio frequency cycle to approximately the same peak value.
(11) The OUTPUT LEVEL control is located directly above the OUTPUT LIMITER control. Turning this control in a counterclockwise direction increases limiter action by decreasing the peak value of audio frequency voltages that appear in output of the limiter circuit. The limiter may thus be used to limit noise peaks or pulses which are greater than the maximum value that the limiter will pass, or in addition to this action it may also be used to provide a means of automatic volume control. Automatic volume control action is obtained by increasing the receiver gain and decreasing the output level by means of the limiter so that when the desired signal fades to the lowest usable level, the limiter still cuts off the desired signal peaks to a slight extent.

3. C.W. RECEPTION.

a. After the Model RBL Equipment is properly installed in accordance with Section II, it is put into operation by turning the POWER switch to the ON position. The AUDIO bandwidth switch should be at the SHARP position; the radio frequency GAIN control well advanced; the REGENERATION control advanced sufficiently to cause the detector to oscillate; the OUTPUT LIMITER control turned OFF; and the ANTENNA COMPENSATOR and R. F. TRIMMER adjusted for maximum receiver background noise. The receiver is now adjusted for the reception of C.W. signals and will tune to the approximate frequency indicated by the main tuning dial and band in use.
b. In order to obtain heterodyne detection and the desired resultant audio beat note, the REGENERATION control must be advanced sufficiently to cause the detector tube to oscillate. This condition may be checked by the OSCILLATION TEST button. (See Paragraph 2.a(9).) With the AUDIO bandwidth switch in the sharp position, the heterodyne beat note frequency should be approximately 750 cycles per second to insure that the beat note will pass through the audio band pass filter with minimum attenuation. This condition must be fulfilled by adjusting the main tuning dial to the high frequency side of the point where oscillations from the detector zero beat with the received signal. The ANTENNA COMPENSATOR and R.F. TRIMMER should then be adjusted for maximum signal. Should adjustment of the ANTENNA COMPENSATOR or R. F. TRIMMER cause any change in the frequency of the beat note produced, this change may be corrected by readjustment of the main tuning control.
c. The selectivity of the Type CNA- 46161 Radio Receiver may be reduced by turning the AUDIO bandwidth control to the BROAD position. This makes the tuning less critical and the frequency of the heterodyne beat note may be any value between 700 to 2,500 cycles per second. Preliminary adjustment of the ANTENNA COMPENSATOR and R.F. TRIMMER should be made in accordance with Paragraph 3.b. The ANTENNA COMPENSATOR andR.F. TRIMMER will then be in correct adjustment when the AUDIO switch is turned from the SHARP to the BROAD position.
d. If the signal is partially obscured by static peaks or noise pulses of high intensity and short duration, the best signal-to-noise ratio will be obtained by turning the OUTPUT LIMITER control to the ON position and adjusting the OUTPUT LEVEL control. Automatic volume control action may be obtained at a sacrifice in audio quality by retarding the OUTPUT LEVEL control in a counterclockwise direction beyond the point where audio distortion is observed. (See Paragraph 2.a(11).)

4. M.C.W. RECEPTION.

a. Although primarily suited to C.W. reception, the Type CNA-46161 Receiver may be used for M.C.W. reception on frequencies between 200 and 600 Kc . Set controls as follows: POWER switch in the ON position, AUDIO bandwidth switch in the BROAD position, R.F. GAIN control well advanced, OUTPUT LIMITER switch OFF, and OUTPUT LEVEL control at 10. The REGENERATION control should be set just below the point where the detector starts to oscillate. Adjust

ANTENNA COMPENSATOR and R.F. TRIMMER controls for maximum background noise. The receiver is now adjusted for M.C.W. reception.
b. The OUTPUT LEVEL control may be used in N.C.W. code reception as described in Paragraph 3.d. When receiving voice, the OUTPUT LEVEL control may be used to suppress undesired static peaks, but cannot be used to provide AVC action without excessive distortion.

5. EMERGENCY BATTERY OPERATION.

a. The operating instructions in the preceding paragraphs are also applicable when the receiver is powered by means of batteries. To conserve batteries shut power switch OFF between receiving schedules.

6. FAILURES DURING OPERATION.

a. Troubles or interruptions occurring during reception may often be corrected by checking the equipment as follows:

STEP 1. Check external connections and headphone cords.

STEP 2. Check fuses located at rear of receiver.
STEP 3. Check tubes; a tube which is not burned out will be quite warm and if operative should cause a click in headphones when momentarily removed from its socket.

SECTION IV

THEORY OF OPERATION

1. CIRCUIT DETAILS.

a. As shown in the schematic diagram, Figure 7-1 the Type CNA-46161 Radio Receiver comprises two R.F. stages and a regenerative detector stage, coupled by means of tuned impedances. Two sets of tapped inductors together with a three-gang tuning capacitor are used to cover the frequency range of 15 to 600 kil ocycles. A bandswitchpermits selection of any one of six bands and in addition selects coupling taps on the inductors so as to maintain satisfactory sensitivity and selectivity over the wide frequency range covered by the receiver. The tuned inductors are wound on ceramic forms and are protected against the effects of humidity by means of wax impregnation. Interaction between stages is prevented by copper shields around the inductors and by filters in common power supply leads. A detailed schematic diagram of the radio-frequency portion of the Type CNA-46161 Radio Receiver is shown in Figure 7-2; in this diagram the band switch is shown adjusted to connect the inductors for 15 to 25 kilocycle operation (Band A); to illustrate the theory of operation, it will be assumed that Band A is in use. Figure 4-1 illustrates the functions of the circuits comprising the receiver.
adjustment as is capacitor, C-109, in the second R.F. stage. The grid bias of both amplifier tubes V-101 and $\mathrm{V}-102$ is adjusted by resistors R-133 and R-134. Resistor, $\mathrm{R}-133$, is ganged to the main tuning capacitor, C-103, to compensate for the decrease in gain, due to decrease in L / C ratio, in tuning from the high frequency end to the low frequency end of each band. Resistor R-134 is a manual R.F. GAIN control mounted on the front panel. The R.F. voltage developed across capacitor, C-103A, is connected to the grid of first R.F. amplifier tube $\mathbf{V}-101$. The plate circuit of $\mathbf{V}-101$ is connected to the second R.F. inductor, L-112, by means of switch section,S-107G, and R.F. tube V-102. Capacitors C-120, C-125 and C-126 complete the R.F. circuits to ground for inductors L-112 and L-114 without grounding the direct current supplied to the plates of the R.E tubes.
b. SECOND R.F. STAGE. - The principles of operation of the second R.F. amplifier stage are similar to that described for the first R.F. stage.
c. DETECTOR CIRCUIT. - The R.F. voltage developed across capacitor, C-103C, is coupled to the grid of detector tube, $\mathbf{V}-103$, by means of capacitor, C-127, which also functions as the detector grid con-

Figure 4-1 - Block Diagram of CNA-46161 Radio Receiver

2. PRINCIPLES OF OPERATION.

a. FIRST R. F. STAGE. - Signal input from the antenna is coupled to the R.F. inductor, L-110, through bandswitch section, S-107A, and capacitor C-102. When using the long antenna terminal, an additional capacitor, $\mathbf{C - 1 0 1}$ is connected in series with the antenna for loose coupling. Resistors R-136 and R-137 provide a leakage path for static charges which might otherwise break down the antenna coupling capacitors. Inductor, $\mathrm{L}-110$, is tuned to the desired frequency by trimmer capacitor, C-104, and section, C-103A, of main tuning capacitor, $\mathrm{C}-103$. These capacitors are selected by switch section S-107D. Trimmer capacitor, $\mathrm{C}-104$, is located on the front panel for manual
denser. Resistor, R-106, serves as a detector grid leak. C.W. reception, as well as increased sensitivity and selectivity, are provided by connecting the detector in an electron-coupled regenerative circuit. The feedback current is taken from the cathode of $\mathrm{V}-103$ and connected to the proper portion of L-114 by switch section, $\mathrm{S}-107 \mathrm{~K}$, Audio output is taken from the plate of V - 103 without affecting the stability of the oscillatory circuit. Regeneration is controlled by potentiometer R-127 which adjusts the screen voltage of $\mathrm{V}-103$.
d. SIMILARITIES BETWEEN TUNING BANDS. The operation of the remaining radio-frequency bands is similar to the operation of Band A as explained in
the preceding paragraphs. In some band positions it is necessary to place additional capacity across unused portions of the inductors to prevent absorptive resonances from affecting the band in use. The R.F. selectivity of the receiver is shown in Figure 5-15.
e. AUDIO CIRCUITS. - The output of detector tube, V-103, is connected to the R.F. filter comprised of resistor, R-108, and capacitors C-130 and C-131 which removes R.F. components from the audio signal. The audio voltages appearing across plate load resistor, $\mathrm{R}-109$, are coupled to first audio tube, V-104, by means of capacitor, C-133. The amplified audio appearing across plate load resistor, $\mathrm{R}-114$, is coupled to the low-pass filter AF-101 by means of capacitor C-137. Low-pass filter AF-101 is designed to permit a choice of two possible cut-off frequencies at 800 or 3500 cycles per second which may be selected by audio switch S-106. High-pass filter AF-102 has a fixed cut-off frequency occurring at 800 cycles per second. With audio selectivity switch S-106 in the sharp position, the pass band of AF-101 and AF-102 combined is approximately 500 cycles wide at 20 db . down, with peak response occurring at 750 cycles per second. In the broad position the pass band is 3500 cycles wide at 20 db . down with the peak response at 1100 cycles per second. The audio characteristic with audio switch in the sharp position is such as to reduce noise and unwanted signal components as well as to increase the C.W. audio selectivity. The audio output of the lowpass filter is modified by the high-pass filter AF-102 so as to attenuate hum and other low frequency disturbances, since the high-pass filter has a cut-off frequency at 800 cycles per second; increasing attenuation taking place at frequencies lower than 800 cycles. The characteristics of the audio system are shown in Figure 5-16 Audio Fidelity.
f. OUTPUT LIMITER. - The output of high-pass filter AF-102 is connected directly to audio limiter tube V-105. The first section of this tube limits neg-
ative peaks of the audio cycle. The elements of the second section of V-105 are connected so as to limit positive peaks. Noise peaks are thus limited to the level of the desired signal. The limiting action is adjustable by means of potentiometer R-120 which varies the supply voltage applied to the plates of V-105. Limiting action takes place if signal or noise peaks tend to make the cathode of either diode more positive than its corresponding plate. Limiting action may be reduced to a minimum by means of switch S-105 which permits application of a higher positive voltage to the plates of V-105. With high R.F. sensitivity, limiter action serves to hold audio output at a constant level thus providing a useful form of automatic volume control. The output limiter characteristics are shown in Figure 5-18.
g. OUTPUT STAGE. - The audio output voltage of limiter tube V-105 appearing across resistor R-119, is connected to the grid of audio tube V-106 by means of capacitor C-157. The plate of V-106 is connected to the primary of output transformer T-102. The secondary of T-102 is of the balanced type having a grounded center tap; an electrostatic shield provides an R.F. screen between the primary and secondary. A 600 -ohm load connected to the secondary of T-102 reflects the proper impedance into the plate circuit of output tube V-106.
h. POWER SUPPLY. - The power supply section of the Type CNA-46161 Radio Receiver is of the trans-former-rectifier-filter type. Transformer T-101 supplies A.C. heater voltages as well as high A.C. voltage which is rectified by V-107. The output of $\mathbf{V}-107$ is filtered by inductor $\mathrm{L}-108$ and capacitors $\mathrm{C}-159, \mathrm{C}-160$ and $\mathrm{C}-161$. Power socket J-103 provides a means for connecting an external battery power source when A.C. connector plug P-103 is removed and replaced with a similar plug wired to a suitable battery cable.

SECTION V

MAINTENANCE

1. MAINTENANCE TEST SCHEDULE FOR TYPE CNA-46161 RADIO RECEIVER.

NOTE

The attention of Maintenance personnel is invited to the requirements of Chapter 67 of the "Bureau of Ships Manual" of the latest issue.
a. The maintenance test schedule which follows will aid in reducing equipment failures or interruptions resulting from severe service conditions and normal deterioration of component parts:
(1) DAILY.
(a) Adjust controls for normal operation and check reception on Bands A through F.
(2) WEEKLY.
(a) Adjust controls for normal operation and check reception on Bands A through F.
(b) Check external connections for undue wear and for corrosion at terminals.
(3) MONTHLY.
(a) Repeat weekly test. Test vacuum tubes.
(b) Check for loose control knobs.
(4) QUARTERLY.
(a) Check dial calibration.
(b) Test socket voltages.

2. GENERAL TROUBLE LOCATION.

a. A thorough inspection of the receiver and its external connections should be made before any adjustments or repairs are attempted.
b. Failure of a vacuum tube in the receiver is the most likely cause of reduced sensitivity, intermittent operation, or complete failure of the equipment. In all cases of reduced sensitivity or noisy operation, all tubes should be checked, preferably by replacement with tubes of proven quality. The replacement tube should be selected with care to avoid changes in calibration and sensitivity. A poor connection in a tube can usually be found by lightly tapping the tube in question with the receiver adjusted for normal operation. A tube with shorted elements, or a shorted by-pass or filter capacitor, may seriously overload resistors of the associated circuits. Overloads may permanently damage a resistor and cause the surface of the resistor to be scorched, making the defective unit easy to locate by visual inspection. By-pass or filter ca-
pacitors which develop poor connections internally, or which become open-circuited, will in most cases cause decreased sensitivity, oscillation, or affect the normal characteristics of the equipment. The defective unit can be located by temporarily connecting a similar good capacitor in parallel with each capacitor that is under suspicion.
c. Intermittent or noisy operation of the receiver may be caused by loose connections in the wiring or external circuits. Noise may also be caused by solder or metallic particles which cause false connections and/or capacitive changes in R.F. circuits. Such faults are often difficult to find but can usually be located by lightly tapping each circuit element or component with a piece of insulating material. Faults may sometimes be located by observing some peculiar action of one of the controls. The Table of Socket Voltages and Cathode Currents, Figure 5-7, should be consulted when locating faults, and io aid in checking the effectiveness of repairs. Fuses F-101 and F-102 are connected in the A.C. supply circuit. These fuses protect the receiver from damage in the event of a high voltage surge on the A.C. supply line or if a short circuit occurs in the power supply or filament circuit of the receiver. A blown-out fuse may be easily replaced by unscrewing the fuse extractor posts located on the rear of the receiver.

NOTE

All tubes supplied with the equipment or as spares on the equipment contract shall be used in the equipment prior to employment of tubes from general stock.

3. LOCATION OF FAULTY CIRCUITS.

a. GENERAL. - If the receiver is weak or inoperative and the external connections and vacuum tubes are not at fault, a systematic procedure to employ is to adjust the receiver controls for normal operation and then, starting with the output stage, work toward the input stage of the receiver, checking each stage in turn by applying a suitable signal to the grid terminal which should result in a signal being heard in the headphones. If a signal source is lacking a test lead probe touched to the grid terminal should cause a click to be heard. By this means the inoperative circuit may be located and checked for defective components in accordance with the preceding data. The chart which follows lists troubles and indicates points to be checked, except alignment errors which are covered in Section 5-3.
b. VOLTAGE MEASUREMENT. - The table of Socket Voltages and Cathode Currents gives voltage and current readings which should be obtained if the receiver is functioning normally. Correct values of voltages for a normal receiver are also indicated on the schematic wiring diagram.
c. RESISTANCE AND CONTINUITY TESTS, Disconnect the power cord and other external connections before making resistance or continuity tests within the receiver. When making resistance or continuity tests, the schematic wiring diagram should be
consulted to make certain that the component under test is not connected in parallel with some other circuit element thereby resulting in a false measurement. The Table of Inductor and Transformer Resistances, Figure 5-10, gives the actual D.C. resistance of all windings.
d. REPLACEMENT OF BANDSWITCH SECTIONS. - Provision has been made to permit removal of faulty switch sections when necessary. Often, however, it is possible to correct switch contact faults by first switching the rotor to an adjacent band and then bending the contact springs slightly to improve the contact tension. Figure 5-12 shows the band switch and procedure for removal of a section. In instances where it is necessary to replace a switch section, this replacement is most easily accomplished by the following procedure:

STEP 1. Loosen the set screws which fasten the shaft to the indent mechanism located near the front of the receiver. The shaft may now be slid rearward until free of the switch section to be removed.

STEP 2. Remove the two mounting screws which secure the switch section to the frame of the switch.

STEP 3. Unsolder the leads of the faulty switch and, if practicable, immediately resolder the new switch section. With short leads, this procedure may not be possible and in such cases due care should be taken to assure that proper connections are made.

STEP 4. Remount the switch section, replacing the spacer washers and lock washers, but leaving the mounting screws loose enough to permi aligning the switch section with the shaft.

STEP 5. Carefully replace the switch shaft, first ascertaining that the rotor blades of all switch sections are indexed alike. After tightening the shaft set screws, check the band switch at either end of its travel; the band selector dial should point to the corresponding band A or F position. The switch section mounting screws should be securely tightened after operation of the bandswitch has been checked.

4. TECHNICAL INFORMATION.

a. The curve labelled Frequency-Kilocycles Vs. Linear Dial Scale-Divisions, Figure 5-13, together with the curve for C.W. Sensitivity, Figure 5-14, provide data for definitely checking the Type CNA-46161 Radio Receiver to determine if repairs or realignment are necessary. These curves will also serve to
show the efficiency of repair or realignment. The Selectivity, Fidelity, Resonant Overload, A.V.C., and Output Limiter Characteristics of Figures 5-15 to $5-18$ inclusive are necessary where it is desirable to check the performance of the receiver regarding these characteristics.

Figure 5-1 - Trouble Location Chart

RECEIVER CONDITION OR FAULT PROBABLE CAUSES BY REFERENCE NUMBERS	
Weak or Inope	tive $\quad 1,2,3,4,5,6,8,10,11,12,13$
Noisy Recepti	1, 2, 3, 8, 9, 10, 12, 15
Oscillation 2, 5, 6, 8	
Hum 2, 3, 6, 7, 8, 12, 14, 15	
$\underset{\text { Reference }}{\text { RUMBER }}$ (PROBABLE CAUSES OF RECEIVER FAULTS	
1	External connections incorrect or damaged.
2	Burned out or defective tubes.
3	Electrical leakage due to dust and/or humidity.
4	Burned out fuse.
5	Abnormal supply or socket voltages.
6	Abnormal resistor values.
7	Open filter capacitor.
8	Open or shorted by-pass capacitors.
9	Low insulation resistance of coupling capacitors.
10	Bandswitch contacts defective.
11	Open or damaged R.F. inductors.
12	False connections caused by loose solder or wire scrap.
13	Controls incorrectly adjusted.
14	Shorted filter choke.
15	Insulation failure and/or shorted turns in power transformer.

5. PERFORMANCE REQUIREMENTS.

a. SENSITIVITY CHECK.
(1) Equipment Required.
(a) Standard Signal Generator Navy Model LP Series or the equivalent.
(b) Dummy Antenna Navy Type 66017.
(c) 600-Ohm Resistor, 2 Watts.
(d) Output Meter Navy Type 22195.
(1) Connect the Signal Generator to SHORT AN'. through the dummy antenna. (See Figure 5-2.)
(2) Connect the 600 -Ohm load resistor in parallel with the output terminals of the receiver.
(3) Connect the output meter across the 600Ohn load resistor.
(4) Apply an unmodulated carrier from the signal generator to the receiver. The generator must be on the same frequency as the receiver.
(5) Set controls as in Table below.
b. METHOD.

FIGURE 5-2

Control Symbols	Control	
S-102		SOWER Switch
S-106		AUDIO Switch
R-134	R.F. GAIN	ON
S-105	OUTPUT LIMITER SWITCH	OROAD
R-120	OFF	
OUTPUT LEVEL	10	
R-127	REGENERATION	To Setting for Osc.
C-104	ANT. COMPENSATOR	Maximum Gain
C-109	R.F. TRIMMER	Maximum Gain
S-107	BAND SELECTOR	Correct Band
C-103	MAIN TUNING	Signal Frequency

(6) Adjust receiver to produce a 750 -cycle beat note by tuning receiver to a higher frequency than that of the signal generator.
(7) Set the regeneration control for maximum output. Note the reading on the output meter which should be about 6 milliwatts.
(8) Turn the regeneration control towards maximum until output is 3 db . below that indicated in Step (7) above. MAINTAIN 750-CYCLE BEAT NOTE BY RETUNING IF NECESSARY.
(9) Adjust R.F. GAIN control for 60 microwatts of receiver output with signal generator OFF.
(10) Turn signal generator $O N$ and increase generator output to produce 6 milliwatts receiver output with 750 beat note being maintained.
(11) Read the sensitivity of the receiver directly from the attenuator dial of the signal generator.
(12) Following Table indicated the noise and sensitivity of a typical receiver on bands F^{F} through A.

FIGURE 5-3
SENSITIVITY AND MAXIMUM NOISE

SENSITTVITY -uV

BAND	FREQ. KC.	BROAD
F	600	3.0
F	310	4.0
E	310	2.0
E	155	4.0
D	155	2.0
D	80	4.5
C	80	2.0
C	45	4.5
B	45	2.5
B	25	3.5
A	25	3.5
A	15	5.0

6. GENERAL ALIGNMENT DATA.

a. The following alignment data should be carefully studied before making any circuit adjustments. It is inadvisable to attempt alignment of the receiver unless
suitable test equipment is available. Realignment of the CNA-46161 Radio Receiver is indicated if the frequency calibration is in error by more than plus or minus two per cent, or if the panel trimmers cannot be resonated throughout any band.
b. The complete alignment of any band of the Type CNA-46161 Radio Receiver may be divided into three steps:

STEP 1. Detector Alignment.
STEP 2. Second R.F. Amplifier Alignment.
STEP 3. First R.F. Amplifier Alignment.
c. Each band must be checked in the above order when complete alignment is necessary. In general, it is preferable to start with the alignment of the high frequency band and finish with the lowest frequency band. Alignment frequencies and trimmer adjustments by stages are shown in Figure 5-4.
d. REQUIRED TEST EQUIPMENT. - A Navy Model LP Series Signal generator is required together with associated equipment as listed below:
(1) Output Meter, Navy Type-22195 or the equivalent.
(2) Standard Dummy Antenna, Navy Type-66017 or the equivalent.
(3) Output Load Resistor, 600 ohms, 2 watts.

7. PREPARATION FOR ALIGNMENT.

a. Before proceeding with the alignment of the CNA-46161 Radio Receiver, the receiver must be removed from the mounting base and the bottom plate should then be removed. The various trimmer capacitors are mounted directly over the band switch. In order to adjust any of these capacitors it is necessary to loosen the lock nut located on the capacitor shaft bushing; this lock nut should, of course, be tightened again after adjustment has been made. An ordinary metal screw driver having a blade width of one-eighth inch is satisfactory for the trimmer adjustment. The trimmer capacitor positions are shown in Figure 5-6.
b. The receiver control should be adjusted for C.W. operation as explained in Section 3, Paragraph 3.a. Connect the signal generator through a dummy antenna to the short antenna terminals of the receiver as shown by the block diagram of Alignment Connections, Figure 5-5. An output meter having a resistive load of 600 ohms should be connected either to the phone jack output circuit or to the output terminal strip E-101.
c. Alignment adjustments should be made with an R.F.signal input of roughly five microvolts or as necessary to provide STANDARD OUTPUT levei of six

Figure 5-4-Alignment Frequencies and Trimmer Adjustments

Stage	Band	Alignment Freq. Kc.	Trimmer Capacitor Symbol	Adjustments
Detector Calibration	$\begin{gathered} \hline \text { F } \\ \mathrm{E} \\ \mathrm{D} \\ \mathrm{C} \\ \mathrm{~B} \\ \mathrm{~A} \end{gathered}$	600 Kc . 310 Kc . 155 Kc. 80 Kc . 45 Kc . 25 Kc .	$\begin{aligned} & \mathrm{C}-113 \\ & \mathrm{C}-113 \\ & \mathrm{C}-113 \\ & \mathrm{C}-114 \\ & \mathrm{C}-115 \\ & \mathrm{C}-116 \end{aligned}$	Adjust trimmers to calibrate dial for zero beat at alignment frequency of each band.
2nd R.F. Stage Alignment	$\begin{gathered} \text { F } \\ \text { E } \\ \text { D } \\ \text { C } \\ \text { B } \\ \text { A } \end{gathered}$	600 Kc. 310 Kc . 155 Kc. 80 Kc . 45 Kc . 25 Kc.	$\begin{aligned} & C-110 \\ & C-110 \\ & C-110 \\ & C-111 \\ & C-112 \\ & C-112 \end{aligned}$	Adjust main tuning capacitor to high frequency side of alignment frequency to produce a beat note of 750 c.p.s.; with panel R.F. TRIMMER set at zero, adjust trimmer capacitors to obtain peak response at 750 c.p.s. beat note.
1st R.F. Stage Alignment	$\begin{gathered} \text { F } \\ \text { E } \\ \text { D } \\ \mathbf{C} \\ \text { B } \\ \text { A } \end{gathered}$	600 Kc . 310 Kc . 155 Kc . 80 Kc . 45 Kc. 25 Kc .		Adjust ANTENNA COMPENSATOR as required to resonate 1st R.F. stage on all bands.

milliwatts into a 600 -ohm output meter. Adjust input signal level as necessary to avoid overload of the R.F. circuits. R.F. overload is evidenced by broad tuning which prevents accurate adjustment of alignment capacitors.

(1) DETECTOR ALIGNMENT.

(a) Before aligning, check the position of the dial pointer with respect to the tuning capacitor; with the dial pointer set at zero on the linear scale, the tips of the rotor plates farthest from the hubs should line up with all stator tips.
(b) Errors in frequency calibration of the detector circuits occurring at the high frequency end of any band are corrected by adjustment of the proper trimmer capacitor. The detector must be in an oscillating condition for all alignment adjustments.
(c) With the receiver dial and the signal generator both adjusted to the alignment frequency of the band under test, apply a test signal of not more than five microvolts and adjust the detector trimmer capacitor to zero beat with the test signal. Trimmer capacitor C-113 serves to align the detector circuits of bands, F, E, and D; these bands should be checked before adjusting capacitor C-113. A compromise setting should be made if the detector alignment is not exactly the same for these bands. Trimmer capacitors C-114, C-115, and C-116 are provided to adjust the detector alignment of bands C, B, and A respectively and should also be adjusted for zero beat at the appropriate dial calibration and signal frequency.
(2) SECOND R.F. AMPLIFIER ALIGNMENT,
(a) Adjust the main tuning control of the receiver to the high frequency side of the test signal so that peak response occurs at an audio beat note of 750 cycles per second. (750 cycles higher than detector calibration for zero beat.) The beat note may be set
to the correct value by turning the AUDIO switch to the SHARP position and tuning the receiver for maximum response. Set panel R.F. TRIMMER at zero and adjust second R.F. TRIMMER of band being aligned for maximum response, maintaining the beat note at 750 cycles per second. Trimmer capacitor C-110 serves to align the second R.F. circuits of bands F, E , and D while trimmer capacitor C-112 performs this function for bands B and A. A separate trimmer capacitor C-111 is used to align the second R.F. circuits of band C. A compromise setting should be made if the trimmer setting is not the same for those bands having a common trimmer capacitor.

(3) FIRST R.F. AMPLIFIER ALIGNMENT.

(a) The range of the ANTENNA COMPENSATOR is great enough to provide proper alignment of the first R.F. circuits of all bands without additional trimmer capacitors. In general, with good alignment it should only be necessary to set the ANTENNA COMPENSATOR for maximum amplification near the high frequency end of a band and have this setting remain fixed for otherfrequencies throughout the band. This test should be made with the receiver tuned higher than the signal to produce a 750 -cycle beat note.

8. ALIGNMENT ERRORS.

a. Errors in alignment of the R.F. circuits or in frequency calibration of the detector circuits occurring from the middle to the low frequency end of the band may be corrected by bending the end rotor plates of the main tuning capacitor C-103 to adjust the capacity and obtain proper tracking or calibration. This adjustment can be made only when it is required by all or a majority of the bands, as bending the rotor plates affects all bands in a similar manner. To check the performance of the receiver after alignment adjustments have been made, refer to Section 5, Figure 5-3, Sensitivity and Maximum Noise or to the C.W. Sensitivity graph, Figure 5-14.

Figure 5-5 - Alignment Connections

Figure 5-6 - Trimmer Capacitor Locations

Figure 5-7 - Tube Socket Voltages and Cathode Currents

Measure from Terminal to Chassis	PinNo.	Variable		Voltage		Current	
		$\begin{array}{r} \text { Var } \\ \text { Symbol } \end{array}$	Setting	atiable at	$\begin{aligned} & \text { Variable } \\ & \text { at } 10 \end{aligned}$		a.
V-101 Grid	4	R-134		0	0	0	0
V-101 Cathode	5	R-134		59(100)	10.5(25)	0	2.25
V-101 Screen*	6	R-134		110(250)	100(250)	0	. 45
V-101 Plate*	8	R-134		210(250)	188(250)	0	1.8
V-101 Suppressor	3	R-134		59(100)	10.5(25)	0	0
V-102 Grid	4	R-134		0	0	0	0
V-102 Cathode	5	R-134		59(100)	10.5(25)	0	2.15
V-102. Screen*	6	R-134		110(250)	100(250)	0	. 45
V-102 Plate*	8	R-134		210(250)	185(250)	0	1.7
V-102 Suppressor	3	R-134		59(100)	10.5(25)	0	0
V-103 Grid	4			0	0 (10)	0	0
V-103 Cathode	5			0	0	0	1.1
V-103 Screen*	6	R-127		0	37(50)	0	. 3
V-103 Plate*	8			190(250)	100(250)	0	.8
V-103 Suppressor	3				0		0
V-104 Grid	4			0	0+	0	0+
V-104 Cathode	3-5			.7(1.0)			1.35
V-104 Screen*	5				31(50)		. 35
V-104 Plate*	8				90(100)		1.0
V-104 Suppressor	3-5				.7(1.0)		0
V-105 Plate D2*	3	S-105	Off		55(100)		. 15
V-105 Cathode D2*	4	S-105	Off		55(100)		. 15
V-105 Plate D1*	5	S-105	Off		55(100)		. 40
V-105 Cathode D1*	8	S-105	Off		55(100)		$\therefore 0$
V-106 Grid	5				0		0
V-106 Cathode	8				14(25)		28
V-106 Screen	4				205(250)		3
V-106 Plate	3				192(250)		25
V-107 Heater	2-8				218(250)		
V-105 Plate D2*	3	S-105	On	0	9.4(10)	0	. 03
		R-120					
V-105 Cathode D2*	4	S-105	On	.4(1.0)	9.7(10)	0	. 03
		R-120					

Figure 5-7 - Tube Socket Voltages and Cathode Currents

Measure from Terminal to Chassis	Pin No.	Variable		Voltage		CurrentDC Ma.	
		-Symbol	Setting	at 0	at 10	At 0	At 10
V-105 Plate D1*	5	S-105	On	-.25(1.0)	9.5(10)	0	. 07
		R-120					
V-105 Cathode D1*	8	S-105	On	.4(1.0)	9.7(10)	0	. 07
		R-120					
Filter Output (B+)					192		50

All measurements should be made with the equipment connected for normal operation as follows: R.F. Gain at 10, Regeneration at 0, Audio at Broad, Output Limiter at Off, Dial at High Frequency End of Band F, Output Level at 0 and Power Switch at On except when otherwise indicated in Figure 5-7. Voltage measurements are made with a 1,000 ohms per volt voltmeter except where indicated with an ${ }^{*}$ in which case Voltage must be measured with a 20,000 ohms per volt voltmeter in order to obtain a useful reading. Numbers in parenthesis after voltage readings indicate the voltmeter range that should be used for each measurement. All readings will depend (in varying degree) upon the resistance of the meter and therefore upon the meter range that is used. These voltages should not be considered as operating voltages as in many cases the voltmeter loading renders circuits inoperative with resultant departure from true operating voltages.

Figure 5-8 - Tube Base Diagrams

Figure 5-9 - Tube Socket to Chassis Resistance

TUBE	PIN	1	2	3	4	5	6	7	8
V-101		0	F	670	$17-110^{*}$	670	19 K	F	25 K
V-102		0	F	670	5 meg.	670	19 K	F	35 K
V-103		0	F	$0.3-5^{*}$	2.5 meg.	$0.3-5^{*}$	31 K	F	142 K
V-104		0	F	500	.5 meg.	500	500 K	F	137 K
V-105		0	F	300 K	100 K	130 K	$-\ldots-$	F	100 K
V-106		-	F	17.4 K	17 K	.5 meg.	---	F	500
V-107		-	17.3 K	---	250	$-\cdots-$	250	--	17.3 K

All measurements made with the receiver controls set as follows: R.F. GAIN at 10, REGENERATION at 10, OUTPUT LEVEL at 10, OUTPUT LIMITER ON, and tuning dial at 1000 on numerical scale; all external connections removed. F indicates heater terminals, ${ }^{*}$ varies with band in use.

Figure 5-10 - Inductor and Transformer Resistances

LOW PASS FILTER WIRING

Figure 5-11 - Low Pass Filter Wiring

Figure 5-12 - Procedure for Removal of Band Switch Section

Figure 5-13. - Frequency-Kilocycles Vs. Linear Dial Scale Divisions

Figure 5-14-C.W. Sensitivity Graph

Figure 5-16 - Overall Audio Fidelity
5-14

Figure 5-17 - Resonant Overload Characteristics

Figure 5-18 - Output Limiter Characteristics

TABLE I				
FOR MODEL RBL,				
LIST OF OBL-1/2 RAJOR UNITS				
Quantity	Symbol			
Group				

Designation\end{array}\right)\)

FOR MODELS PRL, RBL-1 AND RBL-2 RECEIVING EQUIRMENTS								
$\begin{aligned} & \text { SYMBOL } \\ & \text { DESIG. } \end{aligned}$	FUNCTION	DESCRIPTIION	NTD JAN or AWS	NAVY DRAWING OR SPEC.	MPR.	MFR. DESIG.	SPECIAL TOLERANCE RATING OR MODIFICATION	NATIONAL CO DRAWING AND PART NUMBER
STRUCTURAL PARTS								
A-101	Main Dial Window	Wind ow, Cellulose Acetate				B-513		B-513
CAPACITORS								
c-101 ${ }^{\text {c-101 }}$,	Long Ant. Coupling	Mica: . 0003 Mrd. $\pm 10 \%, 500$ V DC W Ceramic: . $0003 \mathrm{MPd} . \pm 10 \%$, 500 V DC W	-481014-10	RE 48A 1486	14	$\begin{aligned} & 1468 \\ & 810-385 \end{aligned}$	Wax Dip	$\begin{array}{\|l} \mathrm{D}-774 \\ \mathrm{D}-825 \mathrm{C}-333 \end{array}$
C-102	Short Ant. Coupling	Mica: . 0008 Med. $\pm 10 \%, 500$ \checkmark DC W	-481428-10	RE 48A 143	14	1467	Wax Dip	D-775
$\begin{aligned} & c-103 \\ & c-103 A \end{aligned}$	Main Tuning lst R.F. Tuning	Var. Air: Three Section 54-470 Mmf.			1	SA-19-E		D-618
C-103B	2nd R.F. Tuning	$54-470 \mathrm{limt} \text {. }$						
$\underset{\text { c-103C }}{\substack{\text { c-104 }}}$	Detector Cuning	Var. Air: 8 -95 smf. 1000 VW	-481555			SA-19	SS-90	D-809
c-105	hnt. Coupling, Bands D, E, F	Mica: . 000045 Mfd . $\pm 5 \%, 500$ V DC W	-481559-5	RE 48A 148	14	1468	Wax Dip	D-774
C-105'	Ant. Coupling,	Ceramic: . $000045 \mathrm{Mrd}. \pm 5 \%$, 500 V DG	-482499-5 ${ }^{\text {\# }}$		10	D		D-825D-416
C-106	Band. Coupiing, Band B	Mica: . $001 \mathrm{Mfd} . \pm 10 \%, 500$ ∇ DC W	-48983-10	RE 48AA 143D	14	1467	Wax Dip	D-775
C-107	Ant. Coupling, Band C	$\begin{aligned} & \text { Mica: } \\ & \nabla \mathrm{DC} \\ & \text { W } \end{aligned} .00006 \text { Hfd. } \pm 5 \%, 500$	-481065-5	RE 48A 1486	14	1468	Wax Dip	D-774
C-107	Ant. Coupling, Band C	Ceramic: . $00006 \mathrm{MPd} . \pm 5 \%, 500$ V DC W	cc35UJ620J\#		10	c		D-825C-310
C-108	L-109 Trimmer,	Mica: . $0001 \mathrm{Mrd} . \pm 10 \%, 500$ $\nabla \mathrm{DC}$ W	-48674-10	RE 48A 148C	14	1468	Wax Dip	D-774
C-108'	$\mathrm{L}-109 \text { Trimmer, }$ $\text { Bands } D, E, F$	Ceramic: . $0001 \mathrm{Med} . \pm 10 \%$, 500 ∇ DC	CC35GG101K\#		10	c		D-825C-304
* C-109	R.F. Trimmer	Var. Air: $6-37 \mathrm{Nmp} .1000 \mathrm{~V}$ W	-481554		$\frac{1}{1}$	SA-19-A SA-11-F	$\xrightarrow[\text { SSI }]{\text { US }}$	D-808
* $\mathrm{C}-110$	L-111 Trinmer, Bends D,E,F	Var. A1r: 5-55 lmf. 500 V W	-481556		1	SA-11-F	USL-50	D-815
C-110'	L-111 Trinmer, Bands D, E,F	Var. Air: 5-55 lmf. 500 V W	-481556		1	3A-435	PSL-50	D-810
*C-111	L-112 Trimmer, Band C	Var. Air: 6-75 Nmf. 500 V W	-481557		1	SA-11-G	USL-75	D-815
*C-111	Band C L-112 Trimmer,	Var. Air: 6-75 lmf. 500 V W	-481557		1	SA-436	PSL-75	D-810
* C-112	$\begin{aligned} & \text { L-112 Trimmer, } \\ & \text { Bands } \mathrm{A}, \mathrm{~B} \end{aligned}$	Var. Air: 8-100 Mmt. 500 V W	-481558		1	SA-11-H	USL-100	D-815

[^2]6-2

TABLE II PARTS LIST BY SYMBOL DESIGNATION FOR NODELS RBL, RBL-1 AND RBL-2 RECEIVING EQUIPMENTS								
$\begin{aligned} & \text { SYMBOL } \\ & \text { DESIG. } \end{aligned}$	FUNCTION	DESCRIPTIION	$\begin{aligned} & \text { NTD } \\ & \text { JAN OR AWS } \end{aligned}$	NAVY drawing OR SPEC.	2IFR.	MFR.	SPECIAL TOLERANCE RATING OR MODIFICATION	NATIONAL 00 DRAWING AND PART NUMBER
CAPACITORS (Continued)								
C-133'	V-104 Grid Coupline	Foil-Paper: . 01 Mfd. $\pm 10 \%, 300$	-481567		14	338 T		E-369-42
*C-134	V-104 Cathode	Same as C-120	-481550-10					
* C-135	Bypass ${ }^{\text {V-104 }}$ Soreen Bypass	Same as C-120	-481550-10					
* C-136	V-104 Plate Filter	Same as C-126	-481551-10					
*C-137	V-104 to AF-101	Same as C-118	-481549-10					
C-138	Coupling ${ }^{\text {Pr }}$ AF-101	Mica: . $00035 \mathrm{Mfd} . \pm 10 \%, 500$	-48676-10	RE 48A 148C	14	1468	Wax Dip	D-774
C-138'	Part of AF-101	Ceramí: . $00035 \mathrm{Mfd} . \pm 10 \%, 500$ V DC F	CC350J361J\#		10	810		D-825C-330
C-139	Part of AP-101	Mica: . $004 \mathrm{upd} . \pm 10 \%, 300$ \checkmark DC W	-48929-10	RE 48A 143F	14	1467	Wax Dip	D-775
C-139 ${ }^{\text {r }}$	Part of AP-101	Foil-Paper: . $004 \mathrm{wrd} . \pm 10 \%, 400$ V DC W	$\begin{aligned} & \text { CMR-482495- } \\ & 10 \end{aligned}$		218	340		E-784-14
C-139 ${ }^{\prime}$	Part of AF-101	Poil-Paper: . $004 \mathrm{Mrd} . \pm 10 \%, 400$	CMR-482234-		218	339		E-783-6
C-140	Part of AF-101	$\begin{aligned} & 111 \mathrm{Ca}: \\ & \mathrm{V} \text { DC } \end{aligned} .005 \mathrm{Mrd} . \pm 10 \%, 300$	-481037-10	RE 48A 143	14	1467	Wax Dip	D-775
C-140'	Part of AP-101	Foil-Paper . $005 \mathrm{MPd} . \pm 10 \%, 400$ ∇ DC W	$\begin{aligned} & C M R-482494- \\ & 10 \end{aligned}$		218	340		E-784-2
C-141	Part of AF-101	Same as C-133	-48848-10					
c-141'	Part of AP-101	Foil-Paper: . 01 Mrd. $\pm 10 \%, 300$ \checkmark DC W	-484567 ${ }^{\text {I }}$		14	3387		E-369-42
C-142	Part of AF-101	Same as C-117	-481098-10					
C-144	Part of 4 Pr-101	Same as Same as C-139	-481098-10					
C-145	Part of AP-101	Same as C-133	-48848-10					
C-145'	Part of $A F-101$	Foil-Paper: . $01 \mathrm{MPd} . \pm 10 \%, 300$ V DC W	-481567		14	3387		E-369-42
C-146	Part of AF-101	Same as C-140	-481037-10	RE 48A 143	14	1467	Wax Dip	D-775
C-147,	Part of AF-101	Same as C-138 ${ }^{\text {cos }}$	-48676-10					
C-147'	Part of AF-101	Ceramic: . 00035 Mfd . 110%, 500 \checkmark DC W	CC35UJ361J\#		10	810		D-825C-330
$\begin{aligned} & \mathrm{C}-148 \\ & \mathrm{C}-149 \end{aligned}$	Part of AP-102 Part of AF-102	Same as C-140 M10a: .006 Mfd. $\pm 10 \%, 300$	$\begin{aligned} & -481037-10 \\ & -48847-10 \end{aligned}$	RE 48A 143F	14	1467	Wax D1p	D-775
C-149'	Part of AF-102	Goil-Paper: . $006 \mathrm{Mrd} . \pm 10 \%, 400$ V DC W	-481832-10\#		218	340		E-784-4

$\begin{aligned} & \text { SMBBOL } \\ & \text { DESIG. } \end{aligned}$	FUNCTION	DESCRIPTIION	NAVY TYPE NUMBER	NAVY DRAWING OR SPEC.	MFR.	MFR. DESIG.	SPECIAL TOLERANGE RATING OR MODIPICATION	NATIONAL CO DRAWING AND PART NUMBER
CAPACITORS (Continued)								
$\begin{aligned} & c-166 \\ & c-166 \\ & c-166 \\ & c-167 \\ & c-168 \end{aligned}$	Part of AF-101 Part of AF-101 Part of AF-101 Part of AF-101 R.F. Gain Control Bypass	M1ca: . $003 \mathrm{Mfd} . \pm 10 \%, 500 \mathrm{~V} \mathrm{DC}$ Foil-Paper . $003 \mathrm{MPd} . \pm 10 \%$, 400 V DC W Foil-Paper . $003 \mathrm{MPd} . \pm 10 \%, 400$ V DC W Same as C-166 Same as 0-154	$\begin{aligned} & -481036-10 \\ & -482492-10 \\ & -482491-10 \\ & -481036-10 \\ & -481073-10 \end{aligned}$	RE 48A 143F	$\begin{aligned} & 14 \\ & 218 \\ & 218 \end{aligned}$	$\begin{aligned} & 1467 \\ & 340 \\ & 339 \end{aligned}$	Wax Dip	$\begin{aligned} & \mathrm{D}-775 \\ & \mathrm{E}-784-2 \\ & \mathrm{E}-783-4 \end{aligned}$
aISSCELLANEOUS ELECTRICAL PARTS								
$\begin{array}{\|l\|} \hline \mathrm{E}-101 \\ \mathrm{E}-102 \\ \mathrm{E}-103 \\ \hline \end{array}$	Audio Output Terminals Antenna Terminals Ground Terminal	Insulated Sorew Terminals Insulated Binding Posts Binding Post			$\left\lvert\, \begin{aligned} & 8 \\ & 1 \\ & 1 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 1720 \\ \text { SA-26-C } \\ \text { SA-91-D } \end{array}$	Marked Output	$\begin{array}{\|l\|} \mathrm{E}-265-6 \\ \mathrm{D}-672 \end{array}$
FUSES								
$\begin{aligned} & *_{\mathrm{F}-101} \\ & { }^{\mathrm{F}-102} \end{aligned}$	AC Line Puse AC Line Fuse	2 Amperes, Glass Enolosed Same as F-101			76	1042		F-135-4
INDICATING DEVICES								
$\begin{array}{\|l\|} \hline \text { *I-101 } \\ \text { *I-102 } \end{array}$	Dial Lamp Dial Lamp	6.3V., 15A. Bayonet Base Same as I-101			18	47		F-136-6
JACKS AND RECEPTACLHS								
$\begin{aligned} & \mathrm{J}-101 \\ & \mathrm{~J}-102 \\ & \mathrm{~J}-103 \end{aligned}$	Phone Jack Dummy Socket Power Socket	Single Circuit Recessed Male, Small 7 Prong Same as J-102		$\begin{aligned} & -49008-\mathrm{A} \\ & -49201 \\ & -49201 \end{aligned}$	$\left\lvert\, \begin{array}{l\|l\|} 129 \\ 128 \end{array}\right.$	$\begin{aligned} & 2 A \\ & 61 \mathrm{C} \cdot 7 \mathrm{~s} \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { D-777-1 } \\ & \text { D-769 } \end{aligned}\right.$
INDUCTORS								
$\begin{aligned} & \text { } \begin{array}{l} \mathrm{L}-101 \\ \mathrm{~L}-102 \\ \mathrm{~L}-103 \\ \mathrm{~L}-104 \end{array} \end{aligned}$	R.F. Filter Reactor Part of AF-101 Part of AF-101 Part of AP-101	18 Henry $\pm 20 \%, 470$ Ohms $\pm 10 \%$, DC Res. $4.7 \mathrm{H} . \pm 10 \%, 3600 \mathrm{~T}$. , No. 31E, 200 ohms $\pm 10 \%$ 7.7H. $\pm 10 \%$, 4600 T., No. 33E, $400 \mathrm{hms} \pm 10 \%$ Same as I-102		-47252	1	$\begin{aligned} & \text { SA-31-D } \\ & 13131 \\ & 14004 \end{aligned}$		D-781
' May be used in place of part listed with corresponding symbol. * For actual quantity of spares furnished refer to table IV.								

6-6

		FOR MODELS RBL; RBL-1 AND	LE II YMBOL DESI RBL-2 RECE	ATION ING RQUIPMENTS				
$\begin{aligned} & \text { SYMBOL } \\ & \text { DESIG. } \end{aligned}$	FUNGTION	DESCRIPTION	$\begin{aligned} & \text { NAVY TYPE } \\ & \text { NUMBER } \end{aligned}$	NAVY DRAWING OR SPEC.	MFR.	$\begin{aligned} & \text { MFR. } \\ & \text { DESIG. } \end{aligned}$	SPECIAL TOLERANCE RATING OR MODIFICATION	NATIONAL CO DRAWING AND PART NUMBER
RESISTORS (Continued)								
*R-114	V-104 Plate	. 1 Hegohm $\pm 10 \%, 1 / 2$ Watt, Fixed	-63360-10	RE 13A 372G	10	310		D-770
*R-115	AF-101 Termination	Same as R-108	-63360-10					
*R-116	V-105 Input Plate	Same as R-114	-63360-10					
* $\mathrm{F}-117$	V-105 Plate Pilter	20000 Ohms $\pm 10 \%$, 1/2 Watt, Fixed	-63360-10	RE 13A 372G	10	310		D-770
*R-118	V-105 Cathode	Same as R-114	-63360-10	RF 13A 372G	10	310		D-770
*R-119	V-105 Output Plate	. 25 Kegohms $\pm 10 \%$, 1/2 Watt, P1xed	-63360-10	RE 13A 372G	10	310		D-770
*R-120	Iimiter Control	10000 Ohms, W.W. Var., 1.5 Watt	-631286	RE 13A 492	11	P58-10000V	G-60	D-771
*R-121	Voltage Divider	$50000 \mathrm{Ohms} \pm 10 \%, 1 / 2$ Watt, Fixed	-63360-10	RE 13A 372G	10	310		D-770
*R-122	V-105 Plate Filter	Same as R-121	-63360-10					
*R-123	V-106 Grid	Same as R-111	-63360-10					
*R-124	V-106 Cathode	500 Ohms $\pm 10 \%, 2$ Watt, Fixed	-63474-10	RE 13A 372G	10	316		D-791
R-125	V-104 Plate Filter	Same as R-117	-63360-10	R 13A 372G		316		
*R-126	V-102, V-102 Plate Filter	10000 Ohms $\pm 10 \%$, 2 Watt, Fixed	-63474-10	RE 13A 372G	10	316		D-791
*R-127	Regeneration Contral	25000 Ohms, W,W. Var., 1.5 Watt	-631287	RE 13A 492	11	P58-25000	$I-4168-B$	D-771
*R-128	V-103 Screen Pilter	.1 Megohm $\pm 10 \%$, 2 Watt, Fixed	-63474-10	RE 13A 372G	10	316		D-791
*R-129	V-102 Plate Filter	Same as R-102	-63360-10					
*R-130	V-101 Plate Filter	Same as R-102	-63360-10					
*R-131	Voltage Divider	20000 Ohms $\pm 10 \%$, 2 Watt, Fixed	-63474-10	RE 13A 373G	10	316		D-791
*R-132	Voltage Divider	Same as R-131	-63474-10					
*R-133	Gain Campensation	750 Ohms, W.W. Var., 1.5 Watt	-631284	$\begin{array}{lll}\text { RE } & 13 & 492 \\ \text { RE } & 13 & 492\end{array}$	11	P58-750 P58-5000	D-595	
*R-134	R.F. Gain Control	5000 Ohms, W. Var., 1.5 Ilatt 5000 Oms $+10 \%$ \% Watt, Fixed	-631285	$\begin{array}{lll}\text { RE } & 13 A & 492 \\ R E & 13 A & 372 G\end{array}$	11	P58-5000 316	$\mathrm{I}-4168 \mathrm{~A}$ A	D-771 $\mathrm{D}-791$
* $\mathrm{R}-135$ *R-136	Voltage Divider Long Ant. Static	5000 Ohms $\pm 10 \%$, 2 Watt, Fixed Same as R-111	-63474-10	RE 13A 372G	10	316		D-791
*R-136	Long Ant. Static Drain		-63360-10					
*R-137	Short Ant. Static	Same as R-119	-63360-10					
*R-138	R.F. Gain Shunt	10000 Ohms $\pm 10 \%$, 1/2 Watt, Fixed	-63360-10	RE 13A 372G	10	310		D-770
SWITCHES								
S-101	Oscillation Test Switch	Single Circuit Closing	-24047		5	2001		D-776
S-102	Power Supply Switch	Dual Switch Assembly			3	1570-N4		D-666
* S-102A	A.C. Line Switch	SPST Toggle, Slotted Hendle	-24146		3	80993-C		D-772
*S-102B	Heater And B+ Switch	DPST Toggle, Slotted Handle	-24147		3	81009-P		D-773
S-103	Not Used							
S-104	Not Used							
S-105	Iimiter Switch	Single Switch Assembly			3	81021-V		D-667
*S-105A	- Assembly	SPDT Toggle, Slotted Handle	-24148		3	81021-W		D-863

6-10

FOR HODELSPARTS LIST TABLE RBL SBL								
$\begin{aligned} & \text { SYIBOL } \\ & \text { DESIG. } \end{aligned}$	PUNCTION	DESCRIPTION	NAVY TYPE NUMBER	NAVY DRAWING OR SPEC.	MPR.	$\mid \mathrm{MFR} .$	SPECIAL TOLERANCE RATING OR MODIFICATION	NATIONAL CO DRAWING AND PART NUABER
VACUUM TUBES								
$\begin{aligned} & * \mathrm{~V}-101 \\ & * \mathrm{~V}-102 \\ & * \mathrm{~V}-103 \\ & * \mathrm{~V}-104 \\ & * \mathrm{~V}-105 \\ & * \mathrm{~V}-106 \\ & * \mathrm{~V}-107 \end{aligned}$	$\begin{aligned} & \text { lst R.F. Amplifier } \\ & \text { Tube } \\ & \text { 2nd R.F. Amplifier } \\ & \text { Tube } \\ & \text { Regenerative Det. } \\ & \text { Tube } \\ & \text { lst Audio Tube } \\ & \text { Limiter Tube } \\ & \text { Audio Output Tube } \\ & \text { Rectifier } \end{aligned}$	Super-Control Amplifier Same as V-101 Same as V-101 Pentode Amplifier Twin Diode Pentode Power Amplifier Rectifier	$\begin{aligned} & -6 \mathrm{SK7} \\ & -6 \mathrm{SK7} \\ & -6 \mathrm{SK7} \\ & -6 \mathrm{SG7} \\ & -6 \mathrm{H6} \\ & -6 \mathrm{KGTT} 6 \mathrm{G} / \mathrm{G} \\ & -5 \mathrm{UGG} \end{aligned}$		$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & \text { 6SK7 } \\ & 6 \mathrm{SK7} \\ & 6 \mathrm{SK7} \\ & \text { 6SG7 } \\ & 6 \mathrm{HK} \\ & 6 \mathrm{KGGT} / \mathrm{G} \\ & 5 \mathrm{U} 4 \mathrm{G} \end{aligned}$		
INTERCONNECTTING CABLES								
W-101	A.C. Line Cord	2 Wire, Rubber Covered			69	POSJ		
SOCKETS								
$\begin{aligned} & * X-101 \\ & * X-102 \\ & * X-103 \\ & * X-104 \\ & * X-105 \\ & * X-106 \\ & * X-107 \\ & X-108 \\ & X-109 \\ & X-110 \\ & X-111 \end{aligned}$		Octal Ceramio Same as $\mathrm{X}-101$ Same as $\mathrm{X}-101$ Some as $X-101$ Same as $\mathrm{X}-101$ Same as X-101 Same as $\mathrm{X}-101$ Miniature Bayonet Socket Same as X-108 Extractor Post Same as $\mathrm{K}-110$		RE 49AA 313	$\begin{aligned} & 128 \\ & 127 \\ & 76 \end{aligned}$	$\begin{aligned} & \text { RSS-8M } \\ & \\ & \\ & 85 U \mathrm{~L} \\ & 1075 \end{aligned}$		$\begin{gathered} \text { D-806 } \\ \\ D-887 \end{gathered}$
FILTERS								
AF-101 $A P-102$	Low-Pass Filter High-Pass Filter	Three Section; Cut-Off At 800 Or 35006/s By External Switch Impedance: 50000/50000 Ohras Three Section; Cut-Off At 800C/s, Impedance: $50000 / 50000$ Ohms	$\begin{array}{\|} -53108 \\ -53109 \end{array}$		1	$\begin{aligned} & \text { SA-31-F } \\ & \text { SA-31-I } \end{aligned}$		$\begin{aligned} & D-780 \\ & D-779 \end{aligned}$
STRUCTURAL PARTS								
$\begin{aligned} & A-201 \\ & A-202 \\ & A-203 \end{aligned}$	Shock Mount Shock Mount Shock Mount	Rubber Shock Mount Same as A-201 Same as $\mathrm{A}-201$			125	200PH25		
OPor replacement use. *For actual vuantity of Spares furnished refer to Table IV								

PABLE IIIPARTS LIST BY NAVY TYPE DESIGNATIONFOR MODELS RBL, RBL-1 AND RBL-2 RECEIVING E EUIPMENT								
QUANTITY	$\begin{gathered} \text { NAVY } \\ \text { TYPG } \\ \text { NUMBER } \end{gathered}$	ALI SYMBOL DESIGNATIONS INVOLVED	QUANTITY	$\begin{gathered} \text { NAVY } \\ \text { TYPE } \\ \text { NUMBER } \end{gathered}$	ALL SYMBOL DESIGNATIONS INVOLVED	QUANTITY	$\begin{aligned} & \text { NAVY } \\ & \text { TYPE } \\ & \text { NUMBER } \end{aligned}$	ALL SYMBOL DESIGNATIONS INVOLVED
$\begin{aligned} & \text { MISCELLLANEOUS } \\ & \text { CLASS } 10 \end{aligned}$			VACUUM TUBES CLASS 38			CAPACITORS (CONTINUED) CLASS 48		
1		E-101	3	-6SK7	V-101, v-102, v-103	2	-48929	c-139, C-144
1		E-102	1	-6SG7	V-104	4	-48983	$\begin{aligned} & \mathrm{c}-106, \mathrm{c}-124, \mathrm{c}-130 \\ & \mathrm{c}-131 \end{aligned}$
1		E-103	1	-6H6	V-105	I	-481014	-
2		I-101, I-102	1	-6K6GT/G	V-106			
			1	-5U4G	V-107	2	-481036	C-166, C-167
SWITCHESCLASS 24			R.F.			3	-481037	c-140, c-146, c-148
1	-24047	S-101		TRANSFORMERS AND INDUCTORS		1	-481065	C-107
			1	-47252	L-101	2	-481073	c-154, c-168
1	-24428	S-102	1	-47247	L-109	3	-481080	$\|c-159, c-160, c-161\|$
1	-24427	S-105	1	-47250	L-110	3	-481098-10	
1		S-106		-47248	L-111		-481428	$\left\lvert\, \begin{aligned} & c-117, c-142, c-143 \\ & c-102 \end{aligned}\right.$
1		S-107	1			1		
			1	-47251	L-112	8	-481549-10	$\left\lvert\, \begin{array}{lll} c-118, & c-119, & c-122 \\ c-123 ; & c-137 ; & c-155 \\ c-162, & c-163 & \end{array}\right.$
$\begin{aligned} & \text { FUSES } \\ & \text { CLASS } 28 \end{aligned}$			1	$\begin{aligned} & -47246 \\ & -47249 \end{aligned}$	$\begin{aligned} & \text { L-113 } \\ & \text { L-114 } \end{aligned}$			
			8			-481550-10	$\left\lvert\, \begin{array}{lll} C-120, & C-125, & c-128 \\ c-129, & c-132, & c-134 \\ c-135, & c-158 & \end{array}\right.$	
		$\begin{aligned} & \text { F-101 } \\ & \text { F-102 } \end{aligned}$						
1				CAPACITORS CLASS 48		2	-481551-10	c-126, c-136
TRANSFORMERS AND REACTORS CLASS 30			2	$\begin{aligned} & -48674 \\ & -48676 \end{aligned}$	$c-108, c-165$	1	-481554	C-109
1	-30930	T-101	2		c-121, c-127	2	-481556	c-110, c-116
1	-20931	L-108	2	-48847	C-149, C-153	3	-481557	c-111, c-113, c-115
1	-30932	T-102	5	$\begin{aligned} & -48848 \\ & -48895 \end{aligned}$	$\begin{aligned} & c-133, c-141, c-157 \\ & c-164 \end{aligned}$	1	-481558	C-112
			1			1	-481559-5	c-105

TABLE IVSPARE PARTS LIST BY NAVY TYPE DESIGNATIONFOR MODELS RBL, RBI-1 AND RBI-2 RECEIVING EQUIPMENTS								
QUANTITIRS SQUIPMERNT SPARE PARTS	$\begin{aligned} & \text { NAVY } \\ & \text { TYPR } \\ & \text { NUMBER } \end{aligned}$	ALL SYMBOL DESIGNATIONS INVOLVED	DESGRIPTION	NAVY DRAWING OR SPEC.	MPR.	$\begin{aligned} & \text { MIFR. } \\ & \text { DESIG. } \end{aligned}$	SPECIAL TOLERANCE RATING OR MODIFICATION	NATIONAL CO DRAWING AND PART NUMBER
RESISTORS (CLASS 63) (Continued)								
l $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1\end{aligned}$	$-63360-10$ $-63360-10$ $-63360-10$ $-634744-10$ $-634744-10$ $-63474-10$ $-634744-10$ $-634744-10$ -631284 -631285 -631286 -631287	$\begin{aligned} & \mathrm{R}-111, \mathrm{R}-113, \mathrm{R}-123, \\ & \mathrm{R}-136 \\ & \mathrm{R}-106 \\ & \mathrm{R}-103 \\ & \mathrm{R}-124 \\ & \mathrm{R}-126 \\ & \mathrm{R}-131, \mathrm{R}-132 \\ & \mathrm{R}-135 \\ & \mathrm{R}-128 \\ & \mathrm{R}-133 \\ & \mathrm{R}-134 \\ & \mathrm{R}-120 \\ & \mathrm{R}-127 \end{aligned}$.5 Megohm, $1 / 2$ Watt $\pm 10 \%$ 2.5 Megohm, $1 / 2$ Watt $\pm 10 \%$ $5.0 \mathrm{Megohm}, 1 / 2$ Watt $\pm 10 \%$ $10,000 \mathrm{hm}, \quad 2$ Watt $\pm 10 \%$ $20,000 \mathrm{hm}, 2$ Watt $\pm 10 \%$ $5,000 \mathrm{Ohm}, \quad 2$ Watt $\pm 10 \%$.1 Megohm, 2 Watt $\pm 10 \%$ 7500 hm , w.w. Var., 1.5 Watt $\pm 10 \%$ $5,000 \mathrm{Om}$, W.W. Var., 1.5 Watt $\pm 10 \%$ 10,000 Ohm, W.W. Var., 1.5 Watt $\mathbf{~ 1 1 0 \%}$ $25,000 \mathrm{Omm}, \mathrm{W} . \mathrm{W}$. Var., 1.5 Watt $\pm 10 \%$		10 10 10 10 10 10 10 10 11 11 11 11	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 316 \\ & 316 \\ & 316 \\ & 316 \\ & 316 \\ & P 58-750 \\ & P 58-5000 \\ & P 58- \\ & 10000 \mathrm{~V} \\ & \text { P58- } \\ & 25000 \\ & \hline \end{aligned}$		$\begin{aligned} & D-770 \\ & D-770 \\ & D-770 \\ & D-791 \\ & D-595 \\ & D-771-1 \\ & D-771-3 \\ & D-771-5 \end{aligned}$
QUANTITTES STOCK SPARE PARTS	$\begin{aligned} & \text { NAVY } \\ & \text { TYPE } \\ & \text { NUMBER } \end{aligned}$	ALL SYMBOL INVOLVED DESIGNATIONS	DESCRIPTION	$\begin{aligned} & \text { WTAVY } \\ & \text { DRAWING } \\ & \text { OR SPEC. } \end{aligned}$	MFR.	MFR.	SPEGCIAI TOLERANGE RATING OR MODIPICATION	national co DRANTNG AND PART NUMBER
TRANSFORMERS AND REACTORS (CLASS 30)								
2	-30930 -30931	$\begin{array}{\|c} T-101 \\ \\ \\ L-108 \end{array}$	Power Transformer, $115 \mathrm{~V}_{\cdot}$, 50/60 Cycle, 1 Phase, 50 Watt, Pri: Terms. $1-4600 \mathrm{~T}, \mathrm{No}$. 25S, DC Res. 10 Ohms $\pm 10 \%, 115 \nabla_{\cdot}, 0.5 \mathrm{Amp}$. Sec: Terms. 3-6 35T, No. 16E, DC Res. . 12 Ohms $\pm 10 \%, 6.3 \nabla_{.,} 3 \mathrm{Amp} . \quad$ Sec: Terms. $2-5$ 28T, No. $16 \mathrm{E}, \mathrm{DC}$ Res. 09 Ohms $\pm 10 \%$, 5 V , ${ }^{3}$ 3. Amp. $1 / 2$ H.V.Sec: Terms. $7-8$ 1175T, No. 35E, DC Res. 240 Ohms $\pm 10 \%, 200 \mathrm{~V}_{0} .02 \mathrm{Amp} .1 / 2 \mathrm{H} . \mathrm{V} . \mathrm{Sec}:$ Terms. 8-9 1175T, No. 35E, DC Res. 260 hms $\pm 10 \%$, $200 \mathrm{~V} .$, . 02 Amp . Reactor, $17 \mathrm{H} \pm 20 \%$, Terms. $1-3 \mathrm{5} 000 \mathrm{~T}$, No. 318, DC Res. 300 Ohms $\pm 10 \%$		$\text { \| } 1$	$\mathrm{SA}-31-\mathrm{G}$ SA-31-E		$D-778$
R.F. INDUGTORS AND TRANSFORMERS (CLASS 47)								
$\frac{1}{1}$	$\begin{aligned} & -47246 \\ & -47247 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{L}-113 \\ & \mathrm{~L}-109 \end{aligned}\right.$	Det. Coil, Bands D, E and F lst RF Coil, Bands D, E and F		$\frac{1}{1}$	$\left\lvert\, \begin{aligned} & S A-55-F \\ & S A-55-H \end{aligned}\right.$		$\begin{aligned} & \mathrm{D}-784 \\ & \mathrm{D}-785 \end{aligned}$

6-20

Fig. 7-1 Schematic Wiring Diagram of Type CNA-46161 Reatio Receiver

Fig. 7-2 Coil Switch Diagram - Type CNA-46161 Radio Receiver

Fig. 7-3 R. F. Coil Schematic Diagrams

Fig. 7-4 Front View of Type CNA-46161 Radio Receiver

Fig. 7-5 Top View of Type CNA-46161 Radio Receiver

Fig. 7-6 Bottom View of Type CNA-46161 Radio Receiver

Fig. 7-7 Rear View of Type CNA-46161 Radio Receiver

Fig. 7-8 Top View of Type CNA-10124 Mounting Base

Fig. 7-9 Bottom View of Type CNA-10124 Mounting Base

Fig. 7-10 Typical High Frequency and Low Frequency Coils

Fig. 7-11 Internal View of High Pass Filter

Fig. 7-12 Internal View of Low Pass Filter

Fig. 7-13 Outline Drawing of Type CNA-46161 Radio Receiver

Fig. 7-14 Outline Drawing of Type CNA-10124 Mounting Base

[^0]: * Stock Spares furnished on the basis of one set per ten equipments.

[^1]: ON
 BROAD
 10
 OFF
 10
 Below Oscillation
 For Maximum Gain For Maximum Gain To Desired Band To Signal Frequency

[^2]: : May be used in place of part listed with corresponding symbol.

 * For actual quantity of spares furnished refer to table IV.

