INSTRUCTION BOOK

FOR

MODEL RBK-14

RADIO RECEIVING EQUIPMENT

FOR

AMPLITUDE AND FREQUENCY MODULATED SIGNALS

FREQUENCY RANGE - 27.8 to 143 MEGACYCLES
CONTRACT No. NXsr-69198
the hallicraffers chicago, ill U.s.a.

FOR
MODEL RBK-()
RADIO RECEIVING EQUIPMENT
FOR
AMPLITUDE AND FREQUENCY MODULATED SIGNALS
FREQUENCY RANGE: 27.8 to 143 MEGACYCLES

RESTRICTED

Notice:- This document contains information affecting the national defense of the United States within the meaning of the Espionage Act (U.S.C. 50: 31, 32). The transmission of this document or the revelation of its contents in any manner to any unauthorized person is prohibited.

This Instruction Book is furnished for the information of commissioned, warranted, enlisted and civilian personnel of the Navy and persons authorized by the Bureau Of Ships whose duties involve design, manufacture, instruction, operation, and installation of radio, radar, or underwater sound equipment. The word "Restricted", as applied to this instruction book signifies that it is to be read only by the above personnel, and that its contents should not be made to unauthorized persons not connected with the Navy.

THE HALLICRAFTERS CO.
CHICAGO, ILL. U.S.A.

MODEL RBK-14 MODIFICATION

NOTE: MODIFIED CIRCUIT IN HEAVY LINES

REAR VIEW OF MODIFIED MODEL RBK-14 RECEIVER

TABLE OF CONTENTS

Subject Page
A - DESCRIPTION OF EQUIPMENT 1
B - INSTALLATION 8
C - ADJUSTMENT AND OPERATION 9
D - ALIGNMENT AND SERVICE. 12
E - ELECTRICAL AND MECHANICAL DATA 15
F - LIST OF REPLACEABLE PARTS. 19
G - INDEX TO PARTS MANUFACTURERS 53
table of illustrations
FigurePage
Figure 1. Radio Receiver CHL-46130-D, Front View. iii
Figure 2. Radio Receiver CHL 46130-D, Block Diagram 1
Figure 3. Radio Receiver CHL-46130-D, Schematic Diagram 3
Figure 4. Radio Receiver CHL-46130-D, Top View of Chassis 5
Figure 5. Radio Receiver CHL-46130-D, Bottom View of Chassis 6
Figure 6. Radio Receiver CHL-46130-D, Top Rear View 7
Figure 7. D-C Power Plug Connections 9
Figure 8. Radio Receiver CHL-46130-D, Top View Showing Alignment Points 11
Figure 9. Reconmended Antenna Installations 17
Figure 10. Radio Receiver CHL-46130-D, Outline Dimensional Sketch 18

Figure 1. Radio Receiver CHL-46130-D, Front View

INSTRUCTION BOOK FOR MODEL RBK-() RADIO RECEIVING EQUIPMENT

A. DESCRIPTION OF EQUIPMENT

A-I. GENERAL. - The Model RBK-() radio receiving equipment consists of a type CHI-46130-D ultra-high frequency radio receiver mounted in a sheet steel table mounted cabinet. The receiver is entirely self contained except for headset or speaker, panoramic adapter, and 115/230-volt source.

A-2. RECEIVER UNIT.- Radio Receiver CHL 46130-D is a ultra-high frequency superhetrodyne radio receiver capable of receiving both amplitude modulated ($\mathrm{A}-\mathrm{M}$) and frequency modulated ($\mathrm{F}-\mathrm{M}$) phone signals and continuous wave (C-W) telegraph signals. Automatic volume control ($\mathrm{A}-\mathrm{V}-\mathrm{C}$) and automatio noise limiter (A-N-L) circuits are incorporated. See figure 3 for the schematic circuit diagram.
a. The frequency range of the receiver is from 27.8 megacyoles to 143 megacycles and is divided into three bands. Each band is provided with sufficient overlap to insure continuity of coverage over the entire tuning range.

$\begin{aligned} & \text { b. The } \\ & \text { follows: } \end{aligned}$	complete	tube compliment is
Symbol	Tube Type	Function
v_{1}	JAN- 956	R-F amplifier
v^{1}	JAN- 954	Converter
v^{3}	JAN- 6AC7 JAN-	1st 2nd 1-F amplifier limplifier
v_{5}^{4}	JAN-6SK7	3 rd -F amplifier
v_{6}^{5}	JAN- 6 H 6	A-M second detector and
	Jan- 6AC7	F-M limiter
V^{7}	JAN- 6 H 6	F-M discriminator
v^{8}	JAN- 6SL7GT	Audio voltage amplif
v_{10}	JAN- OD3/ VR-150/30	voltage regulator

Symbol	Tube Type
v^{11}	JAN- $6 \mathrm{~V} 6 \mathrm{GT} / \mathrm{G}$
v^{12}	JAN- 5 U 4 G
v_{14}^{13}	JAN-6J5
V_{15}	JAN- 955

c. All tubes with the exception of the three acorn type tubes can be reached from the top of the chassis. Acorn tubes V_{1}, V_{2} and V_{15} are reached by removing the top cover plate of the r-f sections. See figure 4 for location of all tubes.
d. When receiving s-m signals the circuit consists basically of a stage of radio frequency amplification, a converter stage, a high frequency oscillator, three stages of intermediate frequency amplification, a second detector, an audio frequency voltage amplifier, a push-pull audio frequency power amplifier, a signal level indicator, an automatic volume control circuit and an automatic noise limiter circuit.
e. When receiving $f-m$ signals the circuit consists basically of a stage of tuned radio frequency amplification, a converter stage, a high frequency oscillator, two stages of intermediate frequency amplification, an amplitude limiter stage, a discriminator, a tuning indicator, an audio frequency voltage amplifier, and a push-pull audio frequency power amplifier.

Reference to the block diagram, figure 2, will illustrate the above circuit arrangements.

Figure 2. Radio Receiver CHI-46130-D, Blook Diagram

A-3. CIRCUIT DESCRIPTION,- Refer to the schematic diagram, figure 3. Since the circuit functions of bands 1,2 and 3 are essentially identical this discussion will describe the circuit with the BAND SWITCH $\left(S W_{1 A}\right.$ to $\left.S W_{1 G}\right)$ set at bend 3, as shown in the schematic diagram. The BAND SWITCH $\left(S W_{1}\right)$ selects the proper radio frequency, converter, and high frequency oscillator transformers to tune a given frequency range.
a. Signals pioked up by the antenna enter the receiver through the antenna binding posts on terminal strip TS_{2} (Marked A_{1} and A_{2}.) on the rear apron of the chassis. (Refer to figure 6) The signal is fed to the radio frequency amplifier tube (V_{1}) through the antenna transformer $\left(T_{3}\right)$. The secondary of this transformer $\left(T_{3}\right)$ is tuned by capacitor $C_{1 A}$ and trimmed by capacitor C_{2}.
b. The amplified radio frequency signal at the plate circuit of tube V_{1} is coupled to the control grid of the converter tube $\left(V_{2}\right)$ through the radio frequency transformer T_{6}. A blanking circuit has been connected to the soreen grid of tube V_{1} to provide instantaneous disabling of the receiver by lowering the screen voltage of the r-f tube $\left(V_{1}\right)$ to the point where the gain of the stage is zero. The blanking circuit is controlled by external equipment through the blanking circuit receptacle $\left(\mathrm{SO}_{2}\right)$ located on terminal strip TS_{2}.
o. Another signal generated in the high frequency oscillator tube $\left(V_{15}\right)$ is fed to the cathode of the tube V_{2} through capacitor C_{g}. These two signals mix and heterodyne within the oonverter tube $\left(\mathrm{V}_{2}\right)$ and produce a third signal the frequency of which is the same as the intermediate frequency amplifier channel band-pass frequency or 5.25 MC . The frequency of the signal generated in the high frequency oscillator tube (V_{15}) is controlled by the high frequency oscillator transformer (T_{9}) which is tuned by capacitor ClC. On band \#l the oscillator tunes 5.25 MC . higher in frequency than the received signal frequency and on bands \#2 and \#3 it is 5.25 MC lower in frequency than the incoming signal.
d. A shielded lead from the plate oirouit of the converter tube $\left(V_{2}\right)$ feeds the intermediate frequency signal voltage, through an isolating resistor (R_{71}), to a panoramic adapter connection. This output connection is an Amphenol type 83-1R co-
axial socket. It is located on terminal strip $T S_{2}$, on the rear apron of the chassis. Refer to figure 6.
©. The intermediate frequency amplifier consists of tubes $\mathrm{V}_{3}, \mathrm{~V}_{4}$ and V_{5} and associated transformers $\mathrm{T}_{10}, \mathrm{~T}_{11}, \mathrm{~T}_{12}$, and T_{13}. The i-f channel bend width provided by transformer T_{10}, T_{11}, and T_{12} is expanded by a third winding, controlled by SELECTIVITY switch $\mathrm{SW}_{7 \mathrm{~A}}$ to 7 C . Expanding the i-f amplifier band-pass frequency allows high fidelity f-m reception.
f. The R.F. GAIN control $\left(R_{11}\right)$, connected in series with the cathodes of tubes V_{3} and V_{4} and ground, varies the sensitivity of the receiver by controlling the gain in the first two i-f stages. This is accomplished by varying the self biasing voltage developed by these tubes.
g. The i-f amplifier terminates in two separate dэtectors, namely the amplitude modulation detector and the frequency modulation discriminator.
(1) The amplitude modulation (A-M) detector tube $\left(\mathrm{V}_{6}\right)$ is fed by the fourth i-f transformer $\left(\mathrm{T}_{13}\right)$. The diode load resistor net-work for the first diode section of the tube V_{6} consists of resistors R_{31}, R_{33}, R_{34}, and R_{36}. From this voltage divider network the audio voltage developed is fed to the A.F. GAIN control (R_{43}) through capacitor C_{33} and section SW 8 D of the AM/FM switch. An automatic volume control (A-V-C) voltage developed in this time network is applied to the grids of the lst and 2nd intermediate amplifier tubes (V_{3} and V_{4}) through the isolating networks consisting of resistor R_{10} and capacitor C_{12} for the tube V_{3}, resistor R_{19} and oapacitor C_{16} for tube V_{4} and resistor R_{35} and capacitor C_{8} for both tubes when the receiver is set for A-M reception. The A.V.C. switch $\left(\mathrm{SW}_{4}\right)$ shorts out the a-v-c voltage when automatic volume control is not required. The second diode section of the A-M detector tube $\left(V_{6}\right)$ is used as an automatic noise limiter ($\mathrm{A}-\mathrm{N}-\mathrm{L}$), and is activiated by switch SW_{6}. This circuit functions as follows: Capacitor C_{25} becomes charged by the rectified carrier voltage when the A.N.L. switch $\left(\mathrm{SW}_{6}\right)$ is set at ON . The time constant of this capacitor and associated network is such that the audio frequency variations do not alter this charge. However, during a severe

noise pulse the cathode of the second diode section of tube V_{6} becomes more negative than the charge held by capacitor C_{25}, hence, ourrent flows shorting the audio voltage to ground through capacitor C_{25} until the cathode voltage of the $a \sim-n-1$ diode of tube V_{6} reaches a higher negative potential than its plate. By this action noise peaks are clipped off and do not appear in the output as sudden blasts of noise.
(2) The frequency modulation detector oircuit consists of a limiter stage and a discriminator stage. The limiter tube (V_{7}) is fed by the third i-f transformer $\left(T_{12}\right)$. This stage operates as a saturated amplifier in which the output remains constant over a large range of input levels thus eliminating variations in the amplitude of the received carrier signal. When operating as an $f-m$ receiver, automatic volume control action is obtained by applying a part of the voltage developed across resistor R_{39} to the control grids of the first and second i-f amplifier tubes (V_{3} and V_{4}) through section $\mathrm{SW}_{8 \mathrm{~A}}$ of the F.M./A.M. switch in the same manner as in a-m reception. The constant level output signal from the limiter tube $\left(V_{7}\right)$ is fed to the disoriminator tube $\left(\mathrm{V}_{8}\right)$ through the disoriminator transformer $\left(T_{14}\right)$ and coupling capacitor C_{29}. The discriminator circuit, consisting of transformer $\left(\mathrm{T}_{14}\right)$, tube V_{8} and load resistor R_{40} and R_{41}, converts the frequency variations in the $f-m$ signal into amplitude variations or an audio signal. The de-emphasis network consisting of a resistor R_{42} and capacitor C_{32} attenuates the high frequency end of audio range since these frequencies are emphasized at the transmitter. From the de-emphasis network the audio signal is fed to the A.F. GAIN control (R_{43}) in the same way as the signal from the amplitude modulation detector tube $\left(V_{6}\right)$.
h. The audio amplifier consists of a voltage amplifier and phase inverter stage (tube V_{9}) and a push-pull power amplifier stage (tubes V_{11} and V_{12}). The audio signal from either the $a-m$ detector or the $f-m$ discriminator is fed to the control grid of the first triode section of tube (V_{9}) through the A.F. GAIN control (R_{43}) which controls the amount of excitation to the audio amplifier circuit. The amplified
audio signal from the first triode section of tube V_{9} is fed to the audio power amplifier tube $\left(V_{12}\right)$ and to the second triode section of tube V_{9}. The audio signal on the plate of the second triode section of tube V_{9}, which is now 180° out of phase, is fed to the remaining power amplifier tube V_{11}. The output of the audio power amplifier tubes (V_{11} and V_{12}) is fed to the output terminals through transformer T_{15}, the secondary of which provides output impedances of 500 ohms, 5000 ohms to ground and 600 ohms balanced to ground. The network consisting of resistors $\mathrm{R}_{8}, \mathrm{R}_{12}, \mathrm{R}_{48}, \mathrm{R}_{53}$, R_{54} and R_{69} and capacitors C_{34}, C_{35} and C_{39} provide inverse feedback in varying degrees in the audio amplifier tubes to allow tone control ranging from bass boost to high frequency out off. TONE SWITCH (SW_{9}) selects the desired fidelity.
i. The tuning meter (M_{1}) is used to indicate correct tuning for both amplitude modulation and frequency modulation reception. It is switched from one circuit to the other by sections $S W_{8 B}$ and $S W_{8 C}$ of the A.M./F.M. switch.
(1) When receiving amplitude modulated signals the tuning meter indicates a change in the plate current drawn by the second intermediate amplifier tube $\left(V_{4}\right)$. This tube (V_{4}) draws maximum current with zero signal level. Current drain decreases with an increase in signal level causing the meter to fluctuate in accordance with the strength of the received signal. The meter circuit is completed by turning the R.F. GAIN control (R_{11}) full on (to the extreme right hand position). This activates switoh SW_{3} which is ganged to the control. When switch SW_{3} is "on" the meter and the METER ADJ. resistor $\left(\mathrm{R}_{58}\right)$ are shunted across resistor R_{57}).
(2) When receiving frequency modulated signals the meter indicates resonance by indioating the voltage developed across load resistors R_{40} and R_{41}. When the receiver is in exact tune with the received signal the voltages developed across the two load resistors oancel out while detuning the receiver on either side of the incoming signal frequency causes a difference in the voltage developed across each resistor which is shown on the meter by a deflection on either side of zero.
j. The beat frequency oscillator stage consists of a triode oscillator tube (V_{14}) and a resonant circuit (L_{5}). The frequency

Figure 4. Radio Receiver CHL-46130-D, Top View Of Chassis

Figure 5. Radio Receiver CHL-46130-D, Bottom View Of Chassis

Figure 6. Radio Receiver CHL-46130-D, Top Rear View
of the oscillator is adjusted to approximately the i-f frequency plus 1000 cycles by varying the inductance of L_{5} with an adjustable iron slug. B.F.O. switch (SW_{2}) activates this circuit by applying plate voltage to tube V_{14}. Capacitor C_{60} varies the pitch of the note to suit the operator.
k. The voltage regulator tube $\left(\mathrm{V}_{10}\right)$ supplies a constant voltage to the plate and screen of the mixer tube $\left(V_{2}\right)$, the screen
grid of the second i-f amplifier tube $\left(V_{4}\right)$ and the plate of the high frequency oscillator tube (V_{15}).

1. Socket SO_{1} provides for operation from an external d-c voltage source. When so operated the heater voltage is supplied directly to the tubes while the plate and soreen voltage is applied through the filter network and voltage regulator tube (V_{10}) just as when operating from a-c source.

B. INSTALLATION

B-I. CAUTION.- Voltages appearing within the receiver chassis are high and dangerous. Exercise care in making adjustments. Before making any repairs on the receiver, remove the power cord plug from supply receptacle or disconnect the d-c source from socket SO_{1}.

B-2. UNPACKING.- Carefully unpack and inspect the receiver for possible damage during transit. Claim for any damage should be made immediately to the transportation carrier.

B-3. INSPECTION.- After the receiver has been unpacked and BEFORE power is applied, check the following items:
a. See that the tubes are secure and in their proper sockets. Reference to figure 4 will show their proper location. The three acorn type tubes are made accessible by removing the shield cover over the r-f section.
b. Cheok pilot lamps behind the translucent tuning dials. These can be checked by simply raising the cabinet cover.
c. Cheok the line fuse located in the fuse container on the front panel to see that it is in operating order.

B-4. ANTENNA CONNECTIONS.- Three terminals are provided at terminals strip TS_{2} located on the rear apron of the receiver's chassis. Terminals A_{1} and A_{2} are connected to the primary winding of the r-f stage transformers and the GND. terminal is connected to the receiver's ground system. Refer to figure 9 for suggested antenna.
a. Single Wire Antenna.- When receiving with a single wire antenna, connect a jumper between terminals A_{2} and GND. A single wire antenna of about 50 to 75 feet (including lead-in) is then connected to terminal A_{1}. This type of antenna works well where
the signal to noise ratio is relatively high and a more elaborate installation is not available. Erect the antenna as high and free from surrounding objects as possible.
b. Doublet Antenna. - The doublet antenna is recommended where receiving conditions are difficult or where maximum sensitivity is required over a relatively narrow range of frequencies. The transmission line from the antenna is connected to antenna terminals A_{1} and A_{2}. If a concentric line with a grounded outer conductor is used, connect the inner conductor to terminal A_{1}, the outer conductor to terminal A_{2} and connect a jumper between terminals A_{2} and GND. To determine the proper length in inches for the doublet antenna, divide 5540 by the frequency of reception in megacycles. After cutting the wire to the length determined above, cut it in half and insert an insulator at that point. Solder the two wires of the transmission line to each of the quarter wave sections at the insulator. Keep in mind that this type of antenna is directional broadside to its length and should be so oriented if maximum pickup from a certain direction is desired.

B-5. POWER INPUT CIRCUITS.- The receiver is designed to operate from either a 115/230-volt, 50-60 oycle, a-c power source, or from a 6-volt storage battery and 27 G -volts of " B " battery or vibrator supply.
a. A-C Operation.- If the receiver is to be operated from an a-c line, cheok the setting of the 115/230-volt change-over switch (SW_{10}), located on the chassis deck to the lef't of the power transformer, and see that it is set for the proper line voltage. Also see that the plug (PL_{2}) on the rear apron of the receiver is in place. This is necessary to provide continuity in the power circuits. Refer to figure 3.
b. D-C Operation. - To operate the receiver from external batteries delivering 6 -volts at 4.5 amperes and 270 -volts at 145 milliamperes (or from a vibrator supply of like capacity), connect plug PL_{2} as shown in figure 7 and insert it in socket SO_{1} in place of the jumper plug used for a-c operation.

B-6. AUDIO OUTPUT CIRCUITS.- A headset or loudspeaker may be used with the receiver.

Figure 7. D-C Power Plug Connections
a. The headset jack (J_{1}) marked PHONES and located on the front panel provides a 600 ohm outlet for headset operation. Both terminals of this outlet are insulated from ground. By connecting a jumper between the terminals marked, 600 OHM C.T. and GND. on terminal strip TS_{1}, located on the rear apron of the chassis, this 600 ohm line may be balanced to ground for other uses.
b. The speaker terminal board (TS_{1}) located on the rear apron of the receiver's
chassis provides output impedences of 500 and 5000 ohms for loudspeaker operation.

B-7. PANORAMIC ADAPTER.- A coaxial cable connector $\left(\mathrm{SO}_{2}\right)$ is provided at terminal strip TS_{2} for connection of a panoramic adapter designed to be used with Model RBK receiving equipment. The panoramic adapter is coupled to the plate circuit of the receiver's converter tube V_{2} through isolating resistor R_{71}.

B-8. BLANKING CIRCUIT CONNECTOR.- A coaxial cable connector $\left(\mathrm{SO}_{3}\right)$ is provided at terminal strip TS_{2} for connection to an external blanking pulse generator designed to operate with the Model RBK receiving equipment. The blanking circuit connection is made to the screen grid of tube V_{1} to provide instantaneous disabling of the receiver's r-f amplifier stage.

B-9. REMOTE STAND-BY OPERATION.- Remote control of the stand-by switch in the receiver can be obtained by removing the jumper wire between pins \#3 and \#4 and connecting leads to pins \#3 and \#4 of either the jumper plug (PL_{2}) used for a-c operation or its substitute plug used for battery operation, and connecting the leads to an external relay or switch. Note: The remote relay or switch must be insulated for high voltage, since this switch is wired into the plate voltage circuit of the receiver.

C. ADJUSTMENT AND OPERATION

C-I. PANEL CONTROLS.- Reading across the front panel from left to right the control markings and functions are as follows: (Refer to figure 1.
a. R.F. GAIN (radio frequency gain) Con-trol.- It controls the sensitivity of the receiver. Ganged to this control is the "S" meter switch which connects the tuning meter into the oircuit when the control is rotated completely to the right.
b. BAND SWITCH.- This switch is used to select the desired frequency range covering the frequencies shown on the main tuning dial.
c. A.V.C. (Automatic volume control) Switch.- It switches in a cirouit which controls the sensitivity of the receiver. This action provides a more nearly constant audio output level over reasonable variations in signal strength at the antenna.
d. ANTENNA Control.- This control is used to compensate for misalignment of antenna transformers T_{1}, T_{2} and T_{3} due to antenna impedance variations. Once set for a
given antenna its calibration will hold for a wide range of frequencies. Since this capacitor acts as a trimmer for the main tuning capacitor ($C_{1 A}$), its use will have a slight detuning effect on the high frequency end of Band 3 and will have to be "touched-up" to retune the desired signal.
$\frac{e}{-} \cdot \frac{\text { REC./SEND Switch.- This switch is }}{\text { to silence the receiver for short }}$ periods of time. It connects the high voltage to the receiver circuits when set at REC.
f. SELECTIVITY Switch.- This switch controls the a-c line voltage to the receiver when operating from an a-c power source and in addition sets the band width of the intermediate frequency amplifier stages in its SHARP and BROAD positions.
g. TONE Switch.- It controls a feedback circuit in the audio amplifier stages which allows the audio frequency response to be modified from bass boost through high fidelity to high frequency out-off.
h. A.N.L. Switch.- This switch outs in
a circuit which will increase the intelli-gibility of the received signal when a high noise level distorts the signal. The circuit olips the noise peaks in excess of the normal signal level. The switch should be left at OFF when the receiving conditions are normal.
i. TUNING Wheel.- This control varies the capacity of capacitor C_{1} which tunes the receiver to the desired frequency. The frequency of reception is read directly from the main tuning dial. The scale on the logging dial is used in conjunction with the outer-most scale on the main tuning dial for logging purposes.
j. PHONES Jack. - It is conneoted to the 600^{-}ohm secondary winding of the output transformer and is insulated from the chassis. It can be used to feed a headset or a 600 ohm line.
k. METER ADJ.- This adjustment is used to set the " $S^{\prime \prime}$ meter to its " 0 " signal position when the receiver is set for amplitude modulation reception.

1. PITCH CONTROL.- This control varies the pitch of the $\mathrm{c}-\mathrm{w}$ signal for code reception.
m. B.F.O. Switch. - It turns on the beat frequency oscillator, used to produce the beat note for the reception of c-w (telegraph) signals.
n. A.M./F.M. Switch.- It connects the output of either the a-m detector or the $\mathrm{f}-\mathrm{m}$ discriminator to the audio amplifier and switches the tuning meter from one circuit to the other.
o. "S" meter or tuning meter.- When the receiver is set to receive amplitude modulated signals the tuning meter indicates the carrier streng th of the received signal. To put the meter in operation, turn the R.F. GAIN control to the extreme right until the switch (SW_{3}) snaps "on". The meter is not used when receiving c-w signals.

When the receiver is set to receive frequency modulated signals the tuning meter is used to indicate resonance with the carrier. As the receiver is tuned through an $\mathrm{f}-\mathrm{m}$ carrier the meter pointer will first deflect to one side of " 0 ", return to " 0 " and defleot an equal distance on the opposite side of "O", and return to " 0 ". The zero center position in the middle of the swing represents the correct setting of the receiver tuning dial and indicates resonance.
p. The FUSE holder contains a 3 amp ., 250-volt fuse which protects the receiver against accidental overloads.
q. A.F. GAIN Control.- The audio output level of the receiver is controlled by varying the signal level to the grid of the first audio amplifier tube (V_{g}).

C-2. OPERATION.-

a. A.M. SIGNAL RECEPTION.- To receive amplitude modulated signals set the front panel controls as follows:

SELECTIVITY switch	- Set at A.C. OFF when the set is not in use. Set at SHARP for reception of phone signals.
A.M./F.M. switch	Set at A.M.
BAND SWITCH	- Set to band oovering desired frequency
A.V.C.	- Set at ON
REC./SEND switoh	- Set at REC. Set in SEND position to disable the receivor for short periods.
B.F.O. switch	- Set at OFF
PITCH CONTROL	- Not used
TUNING wheel	- Set dial to frequency of desired signal adjust for maximum tuning meter reading
R.F. GAIN control	- Turn to right until tuning meter switch snaps on
ANTENNA trimmer	- Adjust for maximum tuning reading
A.F. GAIN control	- Adjust for desired signal level at headset or speaker
TONE switch	- Set at HIGH FID. or BASS BOOST when signal to noise ratio is high or at NORMAL or LOW when signal to noise ratio is low.
A.N.L. switoh	- Set at OFF unless baokground noise is excessive

b. F-M SIGNAL RECEPTION. - To reoeive frequency modulated signals set the front panel controls as follows:
\(\left.\begin{array}{rl}SELECTIVITY switch - \& Set at A. C. OFF

\& when set is not in

\& use. Set at BROAD

\& for reception oof\end{array}\right\}\)	phone signals.
A.M./F.M. switch - Set at F.M.	

Figure 8. Radio Receiver CHI-46130-D, Top View Showing Aligrment Points

BAND SWITCH

- Set at band covering desired frequency.
A.V.C. switoh - Not used

REC./SEND switch - Set at REC. Set in SEND position to disable the receiver for short periods.
B.F.O. switoh
PITCH CONTROL
TUNING wheel

- Set at OFF
- Not used TUNING wheel
- Set dial to frequency of desired signal adjust for center " 0 " position of tuning meter.
R.F. GAIN control - Turn all the way to the right
ANTENNA TRIMMER - Adjust for maximum audio level
A.F. GAIN control

TONE switch
A.N.L. switch
o. C-W (TELEGRAPH)RECEPTION. - To receive continuous-wave (telegraph) signals set the front panel controls as follows:

SELECTIVITY switch - | Set at A.C. OFF |
| :--- |
| when the set is not |
| |
| in use. Set at |

SHARP for cow tele-

graph reception. when the set is not in use. Set at for $\mathrm{c}-\mathrm{w}$ tele-

- Set at. A.M.
- Set to band covering desired frequency
Set at OFF SEND position when disabling receiver for short periods of - Set at ON

PITCH CONTROL	- Adjust to produce approximately a 1000 cycle code signal.
TUNING wheel	- Set dial to frequency of signal. Tune for maximum signal level at headset or speaker
R.F. GAIN contro	- Turn up as high as the signal strength of the received signal will allow
ANTENNA trimmer	- Adjust for maximum signal level at headset or speaker
A.F. GAIN control	- Adjust for desired signal level at headset or speaker
TONE switch	- Set at LOW

C-3, CALIBRATION AND LOGGING.- The three frequency ranges shown on the main tuning dial are calibrated directly in megacycles. The fourth or outside scale on the calibrated dial is used for logging purposes. The logging scale runs from 1 to 23. Each of the 23 divisions are further divided into 100 parts by the vernier dial scale, located just above the TUNING wheel. The vernier dial makes one revolution as the calibrated dial moves one division along the logging scale, hence, the log reading will be the calibrated dial log reading followed by a decimal point and the vernier dial reading.

C-4. "S" METER ADJUSTMENT. - With the set turned off check the resting position of the meter. Adjust the screw on the meter face for zero. (Right side of meter face.) Set up the receiver for amplitude modulation reception and set the receiver at a frequency not being used for communications With zero signal level and no noise being received set the METER ADJ. sorew located on the front panel for an "S" meter reading of zero db. (left side of meter scale).

D. ALIGNMENT AND SERVICE

CAUTION - Voltages at various points in the r-f stages and under the chassis are suffioiently high to produce a severe shock. When working on the set avoid contact with the high voltage points and remember, improper or rough handling may disable certain component parts. BE CAREFUL.

D-1. INSPECTION.- All components of the radio set should be given a thorough inspection upon issue and at regular intervals thereafter. Keep the equipment dry. Moisture, even in a completely tropicalized
set may cause deterioration of material and produce general unsatisfactory operation. Dust and dirt materially effect both electrical and mechanical operation. Keep the various parts clean especially the tuning capacitors and gear drive. A minute amount of oil in the gear drive ocoasionally will provide smoother operation. Do not oil the condenser wipers. Noisy reception may be caused by dirty condenser wipers, gain controls, switches, loose connections in the cables, tubes, wiring contacts etc. in the installation. Do not oil any of the switoh
contacts. Check accessible connections and tubes regularly making sure that all contacts are clean and tight and that tubes are held securely in their sookets.

D-2, REPLACING TUBES, LAMPS AND FUSES.- All

 tubes with the exception of the three acorn types are accessible at the top of the chassis. The three acorn tubes are reached by removing the top cover of the r-f assembly. These tubes should be inserted with the short end of the body in the socket. The two pilot lamps, $L M_{1}$ and $L M_{2}$, are identical and are looated behind the translucent dials. They are of the bayonet type and are removed by pressing down slightly in the socket and turning counter-clockwise. The fuse is replaceable from the front panel. It is contained in the bayonet type holder that is removed by pressing in slightly and turning counter-clockwise to release.
D-3. ALIGNMENT.-

a. GENERAL. - The receiver has been carefully aligned at the factory and alignment should not be attempted unless it is known that the adjustments have been tampered with or that tubes of a different manufacturer have been substituted. The equipment required to align this receiver will be:
(${ }^{\prime}$) Signal Generator capable of tuning from 5 to 140 MC .
(2) Non-metalic screw driver
(3) 50 ohm non-inductive resistor for a dummy antenna
(4) Output meter.

b. I-F ALIGNMENT.-

(1) Disconnect the grid lead of the 954 converter tube $\left(V_{2}\right)$ and connect the signal generator output between the grid and ground. Make the conneotion with a small olip or wind a piece of flexible wire around the grid terminal, but do not attempt to solder a lead to the terminal as the heat is sure to orack the glass envelope. Connect the output meter to either the headset jack or the speaker terminal board.
(2) Set the controls on the receiver as follows:
(a) R.F. GAIN control at maximum gain.
(b) A.F. GAIN control at maximum gain.
(c) SELECTIVITY switch at SHARP.
(d) AM/FM switch AM.
(e) BAND SWITCH at band \#2
(F) A.V.C. switch at OFF.
(g) SEND/REC. switch at REC.
(h) A.N.L. switch at OFF.
(i) B.F.O. switch at OFF.
(j) TONE control at NORMAL.
(3) Set the signal generator frequenoy at 5.25 MC . and with the 400 oyole modulation turned on, align transformer $\mathrm{T}_{10}, \mathrm{~T}_{11}, \mathrm{~T}_{12}$ and T_{13} by adjusting the slug adjustment sorews $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{9}$ and S_{10}. Refer to figure 8 for location of these adjustment sorews. A bakelite sorew driver with a metal ar insulated tip is necessary for aocurate alignment.
(4) Repeat the alignment procedure at least once to insure an acourate alignment.
(5) The discriminator transformer T_{14} is aligned as follows:
(a) Set the SELECTIVITY switch at BROAD and $\mathrm{FM} / \mathrm{AM}$ switch at FM .
(b) With the signal generator set at the 5.25 MC . i-f frequency and with the 400 cycle modulation on, rotate the slug adjustment sorew S_{8} until the signal level read on the output meter drops to zero. This null point is approached very suddenly, therefore, the slug adjustment screw must be turned very slowly. NOTE: The output of the signal generator should be approx. 1000 microvolts for good results. Back off the audio gain slightly if necessary.
(c) Now detune this adjustment slightly so that the output meter gives a readable indication.
(d) Adjust the primary slug adjustment, S_{7}, of the discriminator transformer for maximum response.
(e) Retune the secondary slug adjustment until the output again drops to zero.
(f) Detune the signal generator to a frequency lower than the i-f frequency until the maximum output point is reached. Note the output meter reading and the frequency deviation from the i-f frequency. (5.25 MC.)
(g) Repeat the procedure above the i-f frequency. The frequency deviation and maximum output should be the same for good balance. If they are not, then tune the signal generator to the lower of the two peaks and adjust the primary slug adjustment, S_{7}, until the output rises an amount equal to about half the difference of the two outputs previously noted.
(h) Retest for balance as above and readjust the primary slug adjustment until both maximum readings are alike when the signal generator is detuned approximately the same amount on either side of resonance ($5.25 \mathrm{MC}$.) If a balance cannot be obtained, it is an indication that the discriminator transformer secondary slug adjustment has been adjusted off its proper center and will require a very slight readjustment in either direotion. The direction of adjustment that will cause the off-time peeks to assume the same values is the correct one. Care must be taken in adjusting the discriminator secondary control as evena very slight misadjustment will result in distortion in frequency modulated signals.
c. B.F.O. ADJUSTMENT.- With the signal generator connected as for i-f alignment above, set the generator's frequency to 5.25 MC. and turn off the 400 cycle modulation. Turn on the receiver's B.F.O. switch and back of f the A.F. GAIN oontrol slightly. Adjust the iron core sorew on top of ooil L_{5} until a 1000 oycle note is obtained in the headset. The headset should replace the output meter for this operation. Note that the 1000 oyole note appears at two settings of this sorew. Either setting is useable. It merely means that the oscillator is set 1000 oyoles above or below the i-f frequency.
d. R-F ALIGMMENT.- Refer to figure 8 for location of alignment controls.
(1) Connect the signal generator to the antenna terminals A_{1} and A_{2} and wire the dummy antenna resistor (50 ohm noninductive resistor) across the generator terminals. Connect the output meter to the speaker terminals.
(2) Set the controls on the receiver as for i-f amplifier alignment. Refer to paragraph D-3. b, (2).
(3) Turn on 400 oycle tone modulation on the signal generator.
(4) Align the three bands as follows: (a) BAND 1.

1. Set signal generator and receiver at 45 MC .
2. Adjust trimmer capacitor C66 for maximum output. Note that the frequency at which the receiver's oscillator operates on this band, is higher than the signal frequency.
3. Adjust trimmer oapacitor ${ }^{C} 63$ for maximum output.
4. Set signal generator and receiver at 30 MC .
5. Set padder capacitor C_{58} for maximum output while rooking the tuning control to obtain the optimum setting of the padder.
6. Repeat the above operations for alignment of the high frequency end of the band as desoribed.
7. Check the 40 MC. check point for alignment.
(b) BAND 2 .
8. Set signal generator and receiver at 80_{q} MC.
9. Adjust trimmer capacitor C_{67} for maximum output. Note that the frequency at which the receiver's oscillator operates on this band is lower than the signal frequenoy.
10. Adjust trimmer capacitor C_{64} for maximum output.
11. No padder capacitor adjustment is provided for the low frequency end of this band.
12. Cheok the 60 MC . oheok point for alignment.
(c) BAND 3.
13. Set signal generator and receiver at 135 MC .
14. Adjust trimmer capacitor C65 for maximum output. Rock the tuning control while making the adjustment to obtain the optimum settings.
15. It is not recommended that the frequency of the oscillator in this band be adjusted except at the factory or at a depot. Should it be impractioal to return the receiver to a depot or the factory for adjustment, then make the following adjustments:
a. Remove the top cover of the r-f unit and locate the high frequency oscillator coil T_{9}.
b. Set the signal generator and receiver at 135 MC .
c. Locate the white cellanese wire on the coil form of transformer T_{9}, and carefully shift its position for maximum output. Note that the frequency at which the receiver's oscillator operates on this bend is lower then the signal frequency.
d. Set the signal generator and receiver at 90 MC.
e. Locate the heavy tinned wire on the coil form of transformer T_{9} and carefully shift the turns until maximum signal output is obtained. Note that this transformer does not have a padding capacitor.
f. Recheck the high frequency end of the band and then cement the windings in place with "Q-Max" or equivalent low loss cement.
g. Set the signal generator and receiver at 135 MC .
h. Reset trimmer capacitor C_{65} for maximum output.

E. ELECTRICAL AND MECHANICAL DATA

E-I. RESISTANCE CHART.- All measurements were made from the tube socket terminals to ground. The tubes were in their sookets. The power was disconnected from the receiver, all front panel switches were
set at $O N$ and both GAIN controls were turned to their maximum output position. The AM/FM switoh was set at A.M. All measurements were made with a Weston Model 772 analyzer.

ACORN TYPE TUBES

E-2. VOLTAGE CHART. - All measurements were made from the tube socket terminals to ground. The tubes were in their sookets. All front panel switohes were set at $O N$ (REC.-SEND switch at REC.) and both GAIN controls were turned to their maximum output position. The AM/FM switch was set at AM, the SELECTIVITY switoh at SHARP, and
the BAND SWITCH at \#l position. A jumper was connected across the antenna terminals $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and GND, and a 5000 -ohm 10 -watt resistor was conneoted across the 5000 ohm speaker terminals to protect the receiver components during this cheok. All measurements were made with an RCA Volt Ohmyst Junior and with a line voltage of ll7-volts.

ACORN TYPE TUBES

TUBE	JAN									
		H	G1	G2	G3	P	H	K		
V_{1}	956	$6.3(\mathrm{a}-\mathrm{c})$	0	100	2.8	160	0	2.8		
$\mathrm{~V}_{2}$	954	0	0	80	4.2	120	6.3 (a-c)	4.2		
$\mathrm{~V}_{15}$	955	0	-2.6	X	X	100	6.3 (a-c)	0		

STANDARD TYPE TUBES

TUBE	JAN	PIN							
		1	2	3	. 4	5	6	7	8
V_{3}	6AC7	0	0	0	$0-3$	$\left(\begin{array}{l}2.3 \\ 1.5\end{array}\right.$	$\begin{aligned} & 140 \\ & 180 \end{aligned}$	6.3 (a-c)	$\left(\begin{array}{l}240 \\ 260\end{array}\right.$
∇_{4}	6AB7	0	0	0	8	$\begin{array}{r}+1.75 \\ 0.8 \\ \hline\end{array}$	($\begin{aligned} & 120 \\ & 125\end{aligned}$	6.3 (a-c)	(2408
V_{5}	6SK7	0	6.3 (a-c)	(3,9	0	(1.73	+105	0	235 240
V_{6}	6H6	0	0	-5.6	0	-6.8	X	6.3 (a-c)	-5.8
V_{7}	6AC7	0	0	0	-0. 9	0	78	6.3 (a-c)	78
V_{8}	6H6	0	0	-1.0	0	-1.0	X	6.3 (a-c)	0
V_{9}	6SL7GT	0	150	2.2	0	150	2.2	0	6.3 (a-c)
V_{10}	VR-150/30	NC	0	120	X	120	X	120	NC
v_{11}	6V6GT/G	0	6.3 (a-c)	280	260	0.2	X	0	14
V_{12}	6V6GT/G	0	6.3 (a-c)	260	250	0.2	X	0	14
v_{13}	5U4G	0	300	X	280	X	280	X	300
V_{14}	6J5	0	0	110	X	-7. 8	X	6.3 (a-c)	0

NC - No Connection
X - No pin

* - Tie Lug

Figure 9. Recommended Antenna Installations

Figure 10. Radio Receiver CHL-46130-C, Outline Dimensional Sketch
F. LIST OF REPLACEABLE PARTS - MODEL RBK - ()

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
R_{9}	Resistor, fixed, 10 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2}$ " long; same as R_{16}, R_{26}	```lst I-F band expansion on transformer T}\mp@subsup{T}{10}{```	ASA	RC2IAE100K
R_{10}	Resistor, not a replaceable part. Refer to description of transformer T_{10}. Shown for reference only.	V3 $\underset{V_{3}}{\mathrm{~A}-\mathrm{V}-\mathrm{C}}$ decoupling for tube	-	-
R_{11}	Resistor, variable 10,000 ohms $\pm 20 \%$, \#8 reversed taper, shaft $1^{\prime \prime}$ long $\times \frac{1}{4}{ }^{\prime \prime}$ dia., 3 solder lug terminals with the variable contact located in the center and the fixed contacts $1-7 / 16^{\prime \prime}$ apart, no taps; includes a toggle action switch (SW_{3}) on rear which closes the circuit when the control is turned to the extreme right (clockwise)	R.F. GAIN control	$\begin{gathered} \text { CT } \\ \text { type } \\ 135 \end{gathered}$	25C058G
R_{12}	Resistor, fixed 1.0 megohms $\pm 10 \%, \frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2} "$ long	BASS BOOST tone control for tubes V_{11} and V_{12}	ASA	RC21AE105K
${ }^{\mathrm{R}} 13$	Resistor, fixed 120 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated 0.249" 0.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21 AWG wire leads $1-\frac{1}{2}$ " long; same as R_{20}	Cathode bias for tube V_{3}	ASA	RC21AE121K
R_{14}	Resistor, fixed, 39,000 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#2laWg wire leads $1-\frac{1}{2}$ " long	Screen voltage dropping for tube V_{3}	ASA	RC2 JAE393K

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYFE NO. } \end{aligned}$	CONTR'S. PART NO.
R_{15}	Resistor, fixed, 330 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x 0.655" long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2}$ " long; same as $\mathrm{R}_{22}, \mathrm{R}_{25}, \mathrm{R}_{62}$	Plate decoupling for tube V_{3}	ASA	RC21AE331K
R_{16}	Same as R_{9}	2nd I-F band expansion on transformer T_{11}	-	-
R_{17}	Resistor, fixed, 33 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, $0.249^{\prime \prime}$ O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2}$ " long, same as $R_{18}, R_{55}, R_{57}, R_{65}$	Degeneration for tube V_{3}	ASA	RC21AE330K
${ }^{\mathrm{R}} 18$	Same as R_{17}	Farasitic suppressor for tube V_{5}	-	-
R_{19}	```Resistor, not a replaceable part. Refer to description of transformer T}\mp@subsup{\textrm{T}}{1}{ Shown for reference only```	A-V-C decoupling for tube V_{4}	-	-
R_{20}	Same as R_{13}	Cathode bias for tube V_{4}	-	-
R_{21}	Same as R_{2}	Screen voltage dropping for tube V_{4}	-	-
R_{22}		Plate decoupling for tube V_{4}	$\overline{-}$	RC21AE100K
R_{23}	Resistor, fixed, 10 ohms $\pm 10 \%, \frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#2lAWG wire leads $1-\frac{1}{2}{ }^{\prime \prime}$ long	3rd I-F band expansion on transformer T_{12}	ASA	RC21AE100K
R_{24}	Resistor, fixed, 470,000 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2} "$ long; same as $R_{35}, R_{42}, R_{44}, R_{45}, R_{49}, R_{50}, R_{56}$	Grid return for tube V_{5}	ASA	RC21AE4 7.4 K

| REF.
 SYMBOL | NAME AND DESCRIPTION | MFG. CODE
 AND
 TYPE NO. | CONTR'S. |
| :--- | :--- | :--- | :--- | :--- |
| FART | | | |

F．LIST OF REPLACEABLE PARTS－（Cont＇d）．

					11
	1 1 84	4	1 1 1 1 E E	1 1 ¢ ¢	11
$\begin{aligned} & \text { Z } \\ & \text { 曷 } \\ & 0 \\ & \text { Be } \end{aligned}$		Grid return for tube V_{7}			
四㯰	に6	$\underset{\sim}{\infty}$			个

			1
			1
		\%	${ }^{\circ} \mathrm{O}{ }^{-10}$

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	1	1					1		1	
	1	1	年			$\text { ' 舀 } \underset{\substack{0 \\ \hline \\ \hline \\ \hline 0 \\ \hline}}{ }$	1	1 ¢	1	夝
		$\text { Plate decoupling for tube } \mathrm{V}_{15}$								
				$\begin{aligned} & \hat{\sim} \\ & \text { N } \\ & \infty \\ & \infty \\ & \stackrel{0}{0} \\ & \stackrel{\omega}{\infty} \end{aligned}$						$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$
我苗	\％	\％	\&	${ }_{0}^{\circ 0}$	\&	No io	${ }^{\circ}$	R	N2	N

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
R_{74}	Same as R_{64}	Overload suppressor for tube V_{2}	-	-
C_{1}	Capacitor, variable, air dielectric, 3 section, 9 plates with double spacing between plates, min. cap, 6 mmfd., max. cap. $547 \mathrm{mmfd} .$, plates are aluminum, shaft silver plated brass $\frac{1}{2}{ }^{\prime \prime}$ l long x $0.375^{\prime \prime}$ dia., with $\times 2 B$ insulation on stators, front rotor section grounded to frame, other two sections insulated from frame, spade lug mtg., solder lug terminals	Secondary tuning of transformers T_{1} to T_{9} inclusive	Special	48 C 124
C_{2}	Capacitor, variable, air dielectric, single section, 7 plates, min. cap. 3 mmfd., max. cap. $25 \mathrm{mmfd} .$, aluminum plates, ceramic insulation, brass shaft 3/4" long $x \frac{1}{4}$ " dia., mtg. base $\frac{1}{4}$ " thick x l-7/32" dia., mtg. centers $21 / 32^{\prime \prime}$, total depth of unit $7 / 8^{\prime \prime}$, solder lug terminals	ANTENNA trimmer	$\begin{gathered} \mathrm{BC} \\ \text { type } \\ 22-7 \end{gathered}$	48 A039
C_{3}	Capacitor, fixed, ceramic dielectric, $5.75 \mathrm{mmfd} . \pm 0.75 \mathrm{mmfd} ., 500 \mathrm{~V} . \mathrm{D}-\mathrm{C}$ working, temp. coeff. $-0.00075 \mathrm{mfd} . /$ mmfd./ degree Cent. case $0.625^{\prime \prime}$ long x 0.225 dia., two \#22AWG wire leads $1-\frac{1}{2}$ " long, power factor not to exceed 0.1% at 150 KC	Secondary shunt on transformer T_{1}	$\begin{gathered} \text { CRL } \\ \text { type } \\ 807-004 \end{gathered}$	47A005
C_{4}	Capacitor, fixed, mica dielectric, 2200 mmfd. $\pm 10 \%, 500 \mathrm{~V}$. D-C working, case $53 / 64^{\prime \prime}$ long x $53 / 64^{\prime \prime}$ wide x 9/32" thick, humidity resistant, two axial \#leAWG wire leads $1-1 / 8^{\prime \prime}$ long; same as C_{6}, C_{52}, C_{61}	Cathode by-pass for tube V_{1}.	ASA	CM30A222 K

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

$\begin{aligned} & \text { wo } \\ & \text { oun } \\ & \text { 品药 } \\ & 0 \end{aligned}$	CM20A331K 18 ¿ む		1	11	1
		安	1	1	1
		$$			
	อో ${ }^{\text {® }}$	0^{∞}	O 0	ण．${ }^{\text {H／}}$	びび

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	11	11		11		® O ¢ O	1
	11	1 ＇	1 ¢	11	1 氐	O.	1
$\begin{aligned} & \text { Z } \\ & \text { 娄 } \\ & 0 \\ & \text { Be } \end{aligned}$							
		$0^{\infty} 0^{\infty}$ ジロ ジロ					N゙
雨菌	No	A-	-9	Now	N్ర్ర	N゙N	૭๊

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

			1			11
	害	氐	1	1 ¢ ¢	宸	11
$\begin{aligned} & \text { Z } \\ & \text { 莍 } \\ & \text { 3 } \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & H \\ & \ddot{4} \\ & 0 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & \underset{0}{4} \\ & \underset{\sim}{7} \\ & \ddot{4} \\ & 0 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$		$\begin{gathered} \triangleright^{\infty} \\ 50 \\ 50 \\ 0 \\ 0 \\ \vdots \\ \hline \end{gathered}$		$>^{\infty} \text { ' }$ $\stackrel{\circ}{\circ}^{\circ}$
湃苞	へై	\sim_{0}^{∞}	－	\％－5	v^{\sim}	W゙ W゙

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
C_{35}	Capacitor, fixed, mica dielectric, 1800 $\mathrm{mmfd} . \pm 10 \%, 500 \mathrm{~V}$. D-C working, case $53 / 64$ " long $x 53 / 64$ " wide x 9/32" thick, humidity resistant, two axial \#18AWG wire leads $1-1 / 8^{\prime \prime}$ long	Tone control for tubes V_{11} and V_{12}	ASA	CM30A182K
C_{36}	Same as C_{8}	Coupling between tubes V_{9} and V_{12}	-	-
C_{37}	Same as C_{8}	Coupling between tubes V_{9} and V_{11}	-	-
C_{38}	Capacitor, fixed, paper dielectric, 20 mfd . $10+75 \%$, $25 \mathrm{~V} . \mathrm{D}-\mathrm{C}$ working, case hermetically sealed metal $2-1 / 8^{\prime \prime}$ long x $1^{\prime \prime}$ deep x $13 / 16^{\prime \prime}$ high, 2 mtg. feet with $2-1 / 8^{\prime \prime} \mathrm{mtg}$. centers, 2 solder lug terminals insulated from the case	Cathode by-pass for tubes V_{11} and V_{12}	$\begin{gathered} \text { IC } \\ \text { type } \\ \text { 1B113 } \end{gathered}$	46 AO 12
C_{39}	Capacitor, fixed, mica dielectric, $150 \mathrm{mmfd} . \pm 10 \%, 500 \mathrm{~V} . \mathrm{D}-\mathrm{C}$ working, case $53 / 64^{\prime \prime}$ square $\times 9 / 32^{\prime \prime}$ thick, humidity resistant, two axial \#18AWG wire leads $1-1 / 8^{\prime \prime}$ long	Tone control for tubes V_{11} and V_{12}	ASA	CM2OAl51K
C_{40}	Capacitor, fixed, oil-filled paper dielectric, . $5 \mathrm{mfd} .-6+14 \%$, 400 V. D-C working, case hermetically sealed metal $1-13 / 16^{\prime \prime}$ long x $1^{\prime \prime}$ deep x $7 / 8^{\prime \prime}$ high, 2 mtg . feet with $2-1 / 8^{\prime \prime} \mathrm{mtg}$. centers, 2 solder lug terminals insulated from the case; built in accordance with U.S. Army Spec. \#71-516 () and Signal Dwgs SCD-512- () and RL-D-6222	Power supply filter	$\begin{gathered} \text { IC } \\ \text { type } \\ 6 \mathrm{BA} 50 \end{gathered}$	46 AO 50

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
C_{41}	Same as C_{8}	Coupling between tubes V_{9} and V_{12}	-	-
$\left.\begin{array}{l}C_{42} \\ C_{43} \\ c_{44}\end{array}\right\}$	Capacitor, fixed, paper dielectric, triple unit; unit \#l is 4 mfd .650 V . D-C working (C_{42}), unit \#2 is 8 mfd .650 V . D-C working $\left(\mathrm{C}_{43}\right)$, unit \#3 is 8 mfd .650 V . D-C working (C_{44}); hermetically sealed metal case $4-\frac{1}{2}{ }^{4}$ long $\times 2-\frac{1}{2}$ " deep x $5-7 / 16^{\prime \prime}$ high, 2 mtg. feet with 4-3/4" x $2^{\prime \prime}$ mtg. centers, 4 solder lug terminals (one common to all units) insulated from the case by bakelite and neoprene washers, terminals marked "8", "4", "6"	Power supply filter	$\begin{gathered} \text { IC } \\ \text { type } \\ 7392 \mathrm{E} \end{gathered}$	42B043
C_{45}	Same as C_{5}	Heater by-pass for tube V_{15}	-	-
C_{46}	Same as C_{5}	Heater by-pass for tube V_{2}	-	-
C_{47}	Same as C_{5}	Heater by-pass for tube V_{1}	-	-
C_{48}	Capacitors not a replaceable part. Part of line filter LF_{1}. Shown for reference only.	Power line filter in LF_{1}	-	-
C_{49}	Same as C_{48}	Power line filter in LF_{1}	-	-
${ }^{4}$	Same as C_{48}	Power line filter in LF_{1}	-	-
${ }^{\text {C }} 51$	Same as C_{48}	Power line filter in LFI	-	-
C_{52}	Same as C_{4} Capacitor, not a replaceable part.	Plate decoupling for tube V_{14} Grid coupling for tube V_{14}	-	-
C_{53}	Capacitor, not a replaceable part. Refer to description of inductor L_{5}. Shown for reference only.	Grid coupling for tube ∇_{14}		
C_{54}	Capacitor, not a replaceable part. Refer to description of inductor L_{5}. Shown for reference only.	B-F-0 tuning on L_{5}	-	-
C_{55}	Same as C_{5}	Plate decoupling for tube ∇_{15}	-	-

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
${ }^{56}$	Capacitor, fixed, ceramic dielectric, $50 \mathrm{mmfd} . \pm 10 \%, 500 \mathrm{~V}$. D-C working, temp. coeff. $-0.00075 \mathrm{mmfd} . / \mathrm{mmfd} . /$ deg. Cent., case $0.625^{\prime \prime}$ long $x 0.225^{\prime \prime}$ dia., two \#22AWG wire leads $1-\frac{1}{2} "$ long, power factor not to exceed 0.1% at 1500 KC	Plate blocking for tube V_{15}	$\begin{gathered} \text { CRL } \\ \text { type } \\ -812-109 \end{gathered}$	47A025
C_{57}	Capacitor, fixed, mica dielectric, 1000 mmfd. $\pm 10 \%$, 500 V . D-C working, case l-1/16" long x 15/32" wide x 7/32" thick, humidity resistant, two axial \#20AWG wire leads $1-1 / 8^{\prime \prime}$ long	Grid coupling for tube V_{15}	ASA	CM25A102K
${ }^{58}$	Capacitor, adjustable, mica dielectric, $450 \mathrm{mmfd} . \pm 10 \%$, adjustable, bakelite mtg. insulation, 2 solder lug terminals to which are attached \#18AWG tinned copper leads 1" long, both leads insulated from the frame, special L shaped mtg. frame $l^{\prime \prime} \times 7 / 8^{\prime \prime} \times l^{\prime \prime}$ octagon condenser frame $3 / 4^{\prime \prime}$ dia.	Padder for transformer T_{7}	$\begin{aligned} & \text { UE } \\ & \text { type } \\ & \text { S81A } \end{aligned}$	44A050
C_{59}	Capacitor, not a replaceable part. Refer to description of inductor L_{5}. Shown for reference only.	Coupling between tubes V_{14} and V_{6}	-	-
c_{60}	Capacitor, variable, air dielectric, min. cap. 3.5 mmfd ., max. cap. 23 mmfd ., ceramic insulation, 2 mtg . holes with $21 / 32^{\prime \prime}$ mtg. centers, one solder lug terminals (rotor plates), wire slot on stator plates mtg. posts, shaft 29/32" long $x \frac{1}{4}$ " dia., base 1-7/32" long x $15 / 16^{\prime \prime}$ wide, overall depth $2-3 / 8^{\prime \prime}$	PITCH CONTROL for tube T_{14}	$\begin{gathered} \mathrm{RC} \\ \text { type } \\ 22-7 \end{gathered}$	48A064

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	$1 \text { 1 कั }$	11 －	1	1
			11	1
$\begin{aligned} & \text { Z } \\ & \text { 号 } \\ & \text { en } \\ & \text { 岸 } \end{aligned}$				
为	－M Mer	${ }_{0}^{\text {¢ }}$	$\stackrel{\overbrace{0}^{\infty}}{0_{0}^{\infty}}$	है चे

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	-7 8 d ＋	$\begin{aligned} & \text { © } \\ & \text { O} \\ & \text { గో } \\ & \hline \end{aligned}$	1		$\begin{aligned} & \text { H } \\ & \text { OU } \\ & \text { ザ } \end{aligned}$
	$\begin{gathered} \underset{\sim}{\alpha} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	N	1	, 芦	N
$\begin{aligned} & \text { 嵏 } \\ & 0 \\ & \text { 足 } \end{aligned}$		Plate choke for tube V_{15}			
	${ }_{0}^{\infty}$	${ }_{-}$	ベ	バザ	ٌ

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
	sistor R_{61} and capacitors C_{53}, C_{54}, and C_{59}. Resist or R_{61}, fixed, 47000 ohms \pm 10%, $\frac{1}{2}$ watt, carbon, insulated, $0.249^{\prime \prime}$ 0.D. x $0.488^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2} "$ long. Capacitor C_{53}, fixed, mica dielectric, 100 mmfd. $\pm 10 \%, 500$ V. D-C working, case $51 / 64^{\prime \prime}$ long $x 15 / 32^{\prime \prime} \times 7 / 32^{\prime \prime}$ thick, humidity resistant, two axial \#20AWG wire leads $1-1 / 8^{\prime \prime}$ long. Capacitor C_{54} fixed, ceramic dielectric, $200 \mathrm{mmfd} . \pm 10 \%, 500$ V. D-C working, temp. coeff. zero mmfd./ mmfd./ deg. Cent., case 1.875" long x $0.265^{\prime \prime}$ dia., two \#20AWG wire leads $1-\frac{1}{2}$ " long, power factor not to exceed 0.1% at 1500 KC . Capacitor C_{59}, fixed, bakelite dielectric, $2-\frac{1}{2} \mathrm{mmfd} . \pm 20 \%$, 500 V . D-C working, body $3 / 16^{\prime \prime}$ long x $5 / 32^{\prime \prime}$ dia. 2 axial \#20AWG wire leads $1-\frac{1}{2} "$ long. Inductor assembly, filter, 2 section unit; section \#1 inductance 3 henries - 10 + 30\% @150 milliamperes, d-c resistance 85 ohms $\pm 10 \%$, connected to solder lug terminals \#2 and \#3 (L_{6}), section \#2 inductance 12 henries - $10+20 \%$, @90 milliamperes d-c resistance 215 ohms $\pm 10 \%$, connected to solder lug terminals \#1 and \#2 (L_{7}), each section has a separate iron core, coils and cores located so no mutual coupling exists, hermetically sealed case $3-\frac{1}{4}$ " long x $2-9 / 16^{\prime \prime}$ deep x $5-\frac{1}{2}{ }^{\prime \prime}$ high, unit mounts by 4 threaded lugs with $2-5 / 8^{\prime \prime} x$ $1-9 / 16^{\prime \prime} \mathrm{mtg}$. centers breakdown between core and windings 2000 V . RMS, heat rise under	Power supply filter choke	$\begin{gathered} \text { ST } \\ \text { type } \\ \text { 10CU23 } \end{gathered}$	56C048

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTI ON	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
	with 105 micro-microfarads, secondary 1-7/8 turns of \#18 D cel. braid single layer winding with a Q of 158 at 45 megacycles with 99 micro-microfarads; air cores, coils wound on a bakelite tube $1-5 / \varepsilon^{\prime \prime}$ long $x \frac{1}{2}$ " O.D. $\times 3 / 8^{\prime \prime}$ I.D., solder lug terminals		.	
T_{3}	Transformer, R-F. 82 to 143 megacycles, one primary and one secondary winding; primary $3-\frac{1}{4}$ turns of \#28 braided cel. single layer winding with a Q of 98 to 35 megacycles with 85.3 micro-microfarads, secondary $1-\frac{1}{4}$ turns of \#14 solid copper single layer winding with a Q of 185 at 70 megacycles with 95.7 micro-microfarads; air cores, coils wound on a solid form $3 / 4^{\prime \prime}$ long $x \frac{1}{4}$ " dia., extended coil winding leads for terminals	Coupling between antenna and grid of tube V_{1} for band 3	$\begin{aligned} & \text { SWI } \\ & \text { type } \\ & 657 \end{aligned}$	51A271
T_{4}	Transformer, R-F. 27.8 to 47 megacycles, one primary and one secondary winding; primary $28-\frac{1}{2}$ turns of $\# 3 \cdot 4$ SCE single layer winding with a Q of 89 at 5 megacycles with 94 micro-microfarads, seccondary $5-\frac{1}{2}$ turns of \#22 D cel. braid with a Q of 161 at 25 megacycles with 95 micromicrofarads; air cores, coils wound on a bakelite tube $1-5 / 8^{\prime \prime}$ long $x \frac{1}{2}$ " O.D. x 3/8". I.D. solder lug terminals	Coupling between tubes V_{1} and V_{2} for band 1	SWI type 652	51A266
T_{5}	Transformer, R-F. 46 to 82 megacycles, one primary and one secondary winding; primary $11-\frac{1}{2}$ turns of \#3 4 SCE single layer	Coupling between tubes V_{1} and V_{2} for band 2	$\begin{aligned} & \text { SWI } \\ & \text { type } \\ & 655 \end{aligned}$	51A269

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

	O ¢ C/ -1	$\begin{aligned} & \text { N } \\ & \text { Z } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { OH} \\ & -1 \\ & 0 \\ & \text { on } \end{aligned}$
$\begin{aligned} & \text { Z } \\ & \text { H } \\ & \text { H } \\ & \text { 是 } \end{aligned}$			
	${ }_{ \pm}^{\infty}$	0°	$\stackrel{\circ}{\circ}$

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

雨会	

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	H － ¢
$\begin{aligned} & \text { 容 } \\ & \text { 管 } \\ & \end{aligned}$	
事萝	－${ }_{\mathrm{H}}^{-1}$

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	N゙1
$\begin{array}{ll} \text { 国 } \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	
$\begin{aligned} & \text { 各 } \\ & \text { 曷 } \\ & \text { 2e } \end{aligned}$	$\text { Coupling between tubes } V_{4} \text { and } V_{5}$
雨蔩	¢ั

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	$\begin{aligned} & \text { なit } \\ & \text { O} \\ & \text { B } \end{aligned}$
	Coupling between tubes V_{5} and V_{6}
田鰘	－

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { sio } \\ & 0 \\ & 0 \\ & \text { 年花 } \\ & 0 \end{aligned}$	H - - 0 ¢
$\begin{aligned} & \text { Z } \\ & \text { H } \\ & 0 \\ & Z \\ & 0 \end{aligned}$	$\text { Coupling between tubes } V_{7} \text { and } V_{8}$
	$\stackrel{\text { ¢ }}{\substack{\text { H }}}$

F．LIST OF REPLACEABLE PARTS（Cont＇d．）

	灾
$\begin{aligned} & \text { Z } \\ & \text { 弟 } \\ & \text { Z } \\ & \text { 首 } \end{aligned}$	Coupling between audio output tubes V_{11} and V_{12} and load
	$\stackrel{\sim}{\sim}$

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	$\begin{aligned} & \text { 山 } \\ & \text { O} \\ & \text { O} \end{aligned}$
$\begin{aligned} & \text { Z } \\ & \text { 劵 } \\ & \sum_{3}^{2} \end{aligned}$	A－C power transformer
兆会	$\underset{\sim}{\substack{\text { ¢ }}}$

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	$\begin{aligned} & -1 \\ & \text { an } \\ & \text { en } \\ & 8 \end{aligned}$	0 8		$\begin{aligned} & \infty \\ & \text { స్ } \\ & \text { ©్ర } \end{aligned}$
	$\text { 종 } \stackrel{\oplus}{\oplus}$			콩
$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { H } \\ & \text { B } \end{aligned}$				
兩苜	$\stackrel{H}{\sqrt{3}}$	令		

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	N A ¢	¢	8 4 8 8	$\begin{aligned} & \infty \\ & 8 \\ & 80 \\ & \text { én } \\ & \text { م } \end{aligned}$
	등		寅	
			$\stackrel{8}{7}$ \％ ©呺的范 以－M M －©止象会× － 90円 ＋ME O	
$\begin{aligned} & \text { 気 } \\ & \text { 閩 } \\ & \\ & \hline \end{aligned}$		\％	$\frac{0}{4}$	$\stackrel{5}{4}^{-1}$

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
SO_{1}	Socket, octal, female, high dielectric mica filled bakelite body l-7/64" dia. $\times 31 / 64^{\prime \prime}$ thick, silver plated phosphor bronze solder lugs, molded on steel mtg. plate 1-9/32" wide $\times 0.031$ thick having 2 mtg . holes of $5 / 32^{\prime \prime}$ dia. x $1-\frac{1}{2}$ " mtg. centers, pins are numbered on back of socket clockwise from locating pin	D-C power input and remote stand-by connection		6A200
SO_{2}	Socket, not a replaceable part. Refer to description of Terminal Strip TS_{2}. Shown for reference only	Panoramic adapter Socket	-	-
SO_{3}	Socket, not a replaceable part. Refer to description of Terminal Strip TS2. Shown for reference only	Blanking circuit socket	-	-
PL_{1}	Plug and line cord assembly, 2 conductor \# 18 type S-J all rubber covered cord 6 feet long with a spring type (allied type 371) molded on plug at one end and stripped and tinned for $5 / 8^{\prime \prime}$, at the other end	A-C power line connection	$\begin{aligned} & B \\ & \text { type } \\ & 1750 \end{aligned}$	87A125
PL_{2}	Plug, octal, male bakelite body $1-\frac{1}{4}$ " O. D. x 7/16" thick, metal contact prongs 7/16" long, supplied with insulated jumpers between contacts 3 and 4, and contacts 6 and 7	Shorting plug for A-C operating and remote stand-by connection	$\begin{aligned} & \text { AP } \\ & \text { type } \\ & \text { CP-8 } \end{aligned}$	354003
FS_{1}	Fuse, 3 amperes 3250 V. , type 4AG, glass enclosed, l- $\frac{1}{4}$ " long x 9/32" dia., caps nickle plated copper alloy, carries 110% of rated current, vibration factor is 200	Power transformer primary protection	$\begin{gathered} \text { LF } \\ \text { type } \\ 1093 \end{gathered}$	39A318

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \text { N } \\ & \text { A } \end{aligned}$		$\begin{aligned} & \text { ొ } \\ & \text { ¢ } \\ & \text { O } \\ & \infty \end{aligned}$	$\begin{aligned} & \text { O్ర } \\ & \text { OH } \\ & \text { N } \end{aligned}$	1	¢ ¢ 内 8
					1	
$\begin{aligned} & \text { Z } \\ & \text { H } \\ & \text { O } \\ & 0 \\ & B \end{aligned}$		Antenna，Panoramic and Blank－ ing circuit connections		duret tetp 8uṭun? u!̣eW		
	$\stackrel{+}{\delta}$	a．등 夏				
閏品	¢゙1		\sum^{-1}	$\sum_{i=1}^{-1}$	$\sum_{i=1}^{n}$	∇^{-1}

SYMBOL	MANUFACTURER	SYMBOL	MANUFACTURER
AP	American Phenolic Corp. Chicago, Illinois	IC	Industrial Condenser Chicago, Illinois
ASA	Any manufacturer meeting the applicable American Standards Association specifications.	IRC	International Resistance Co. Philadelphia, Pa .
B	Belden Mfg. Co. Chicago, Illinois	LF	Littlefuse, Inc. Chicago, Illinois
BC	Brenner Chemical Co. Chicago, Illinois	MCM	McClintock Meter Co. Minneapolis, Minn.
CH	Cutler-Hammer Milwaukee, Wis.	MN	Meissner Manufacturing Co. Mt. Carmel, Illinois
CRL	Centralab Milwaukee, Wis.	OM	Oak Manufacturing Co. Chicago, Illinois
CT	Chicago Telephone \& Supply Co. Elkhart, Indiana	RC	Radio Condenser Corp. Chicago, Illinois
ER	Erie Resistor Erie, Pa.	RCA	RCA Manufacturing Co., Inc., Camden, N.J.
		SC	Stackpole Carbon Co. St. Mary's, Penna.
EW	Electronic Winding Corp. Chicago, Illinois	ST	Standard Transformer Corp. Chicago, Illinois
GE	General Electric Co. Schenectady, N.Y.	SWI	S.W. Inductor Co. Chicago, Illinois
H	The Hallicrafters Co. Chicago, Illinois.	U	Utah Products Company Chicago, Illinois
HH	Hart \& Hegeman Electric Co. Hartford, Conn.	UE	Underwood Electric Co. Chicago, Illinois

NOTE; The word SPECIAL indicates parts made for or by the contractor.

