RESTRICTED

INSTRUCTION BOOK

FOR

MODEL RBK-13

RADIO RECEIVING EQUIPMENT

FOR

AMPLITUDE AND FREQUENCY MODULATED SIGNALS

FREQUENCY RANGE -27.8 to 143 MEGACYCLES
NXsr-67988

to hallicrafters co. CHICAGO, LL, U.S.A.

SCHEMATIC - Page 3.

(I) Add capacitor C_{82} between the plate of tube V_{5} and the plate of tube V_{6}
(2) Add resistor R_{23} in series with position \#3 of switch section $S_{7 C}$ at transformer T_{12}

LIST OF REPLACEABLE PARTS -
(1) In the NAME AND DESCRIPTION of R_{5} delete reference to Rク1•
(2) Change entry for R_{23} on page 21 from "Not used." to "Resistor, fixed, 10 ohm $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" 0.D. x 0.655" long, humidity resistant, two axial \#2l AWG wire leads l- $\frac{1}{2}{ }^{\prime \prime}$ long. - 3rd I-F band expansion on transformer T_{12} - - ASA - RC2LAE100K."
(3) Change entry for $\mathrm{R}_{7} 1$ on page 25 from "Same as R_{5} " to "Resistor, fixed, $27,000 \mathrm{ohm} \pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x 0.655" long, humidity resistant, two axial \#2l AWG wire leads l- $\frac{1}{2}$ " long - Panoramic isolating resistor - - ASA - - RC2lAE273K."
(4) Add the following entry for C82 to page 35: "Capacitor fixed, bakelite dielectric, $2-\frac{1}{2} \mathrm{mmfd} . \pm 20 \%, 500 \mathrm{~V}$. D-C working: 5/32" diameter x 3/16" long, two axial \#20 AWG wire leads l- $\frac{1}{2}$ " long - - Coupling for transformer T_{13} - - SC, Special - - 49A001."
(5) In the NAME AND DESCRIPTION of R_{24} delete reference to $\mathrm{R}_{42}, \mathrm{R}_{44}, \mathrm{R}_{45}, \mathrm{R}_{49}$ and R_{50}
(6) In the NAME AND DESCRIPTION of R34, in addition to circuit symbols R_{36} and R_{39}, add symbols R_{42}, R_{44}, $\mathrm{R}_{45}, \mathrm{R}_{49}$ and R_{50}.
(7) Change entries for $R_{42}, R_{44}, R_{45}, R_{49}$ and R_{50} on page 23 from "Same as R_{24} " to "Same as R_{34}."
INDEX TO PARTS MANUFACTURED. -
(1) Add to the list on page 53 the following:

SC Stackpole Carbon Co.
St. Mary's, Pa.
INSTRUCTION BOOK
FOR
MODEL RBK-()
RADIO RECEIVING EQUIPMENT
FOR
AMPLITUDE AND FREQUENCY MODULATED SIGNALS

FREQUENCY RANGE: 27.8 to 143 MEGACYCLES

RESTRICTED

Notice:- This document contains information affecting the national defense of the United States within the meaning of the Espionage Act (U.S.C. 50: 31, 32). The transmission of this document or the revelation of its contents in any manner to any unauthorized person is prohibited.

This Instruction Book is furnished for the information of commissioned, warranted, enlisted and civilian personnel of the Navy and persons authorized by the Bureau Of Ships whose duties involve design, manufacture, instruction, operation, and installation of radio, radar, or underwater sound equipment. The word "Restricted", as applied to this instruction book signifies that it is to be read only by the above personnel, and that its contents should not be made to unauthorized persons not connected with the Navy.
Subject Page
A - DESCRIPTION OF EQUIPMENT 1
B - InStallation 8
C - ADJUSTMENT AND OPERATION 9
D - ALIGMMENT AND SERVICE. 12
e - electrical aid mechanical data 15
F - LIST Of REPLACEABLE PARTS. 19
G - INDEX TO PARTS MANUFACTURERS 53
table of illustrations
Figure Page
Figure 1. Radio Receiver CHL-46130-C, Front View. iii
Figure 2. Radio Receiver CHL-46130-C, Block Diagram 1
Figure 3. Radio Receiver CHL-46130-C, Schematic Diagram 3
Figure 4. Radio Receiver CHL-46130-C, Top View of Chassis 5
Figure 5. Radio Reoeiver CHL-46130-C, Bottom View of Chassis. 6
Figure 6. Radio Receiver CHL-46130-C, Top Rear View 7
Figure 7. D-C Power Plug Connections 9
Figure 8. Radio Receiver CHL-46130-C, Top View Showing Alignment Points 11
Figure 9. Recormended Antenna Installations J. 7
Figure 10. Radio Receiver CHL-46130-C, Outline Dimensional Sketoh 18

Figure 1. Radio Receiver CHL-46130-C, Front View

INSTRUCTION BOOK FOR MODEL RBK-() RADIO RECEIVING EQUIPMENT

A. DESCRIPTION OF EQUIPMENT

A-1. GENERAL.- The Model RBK-() radio reoeiving equipment oonsists of a type CHL-46130-C ultra-high frequency radio receiver mounted in a sheet steel table mounted oabinet. The reoeiver is entirely self contained except for headset or speaker, panoramic adapter, and 115/230-volt source.

A-2. RECEIVER UNIT.- Radio Recoiver CHL $46130-\mathrm{C}$ is a ultra-high frequency superhetrodyne radio receiter capable of receiving both amplitude modulated ($A-M$) and frequency modulated ($\mathrm{F}-\mathrm{M}$) phone signals and continuous wave (C-W) telegraph signals. Automatic volume control ($\mathrm{A}-\mathrm{V}-\mathrm{C}$) and automatio noise limiter ($A-N-L$) oircuits are incorporated. See figure 3 for the schematic oircuit diagram.
a. The frequency range of the receiver is from 27.8 megacyoles to 143 megacycles and is divided into three bands. Each band is provided with sufficient overlap to insure continuity of coverage over the entire tuning range.
b. The complete tube compliment is as follows:

Symbol	Tube Type	Function
v^{1}	JANV 956	R-F amplifi
v_{3}^{2}	JJAN- 6 AC ${ }^{\text {a }}$	1st $1-\mathrm{F}$ ampl
v_{4}	JAN- 6AB7	$2 \mathrm{nd} 1-\mathrm{F}$ ampl
v^{4}		${ }^{3} \mathbf{3} \mathbf{r d}$ I-F amplif
		aut omat ic
v^{7}	JAMM 6 H6	F-M disc
v^{8}		Audio voltage amplif voltage regulator

Symbol	Tube Type	Function
v^{11}	JAN- ${ }^{\text {JVGGT/G }}$	Audio power amplifier Audio power amplifier
${ }^{\mathrm{v}^{12}}$	JAN- 504.4	11 wave rectip
v_{15}	JAN- 955	${ }_{\text {lor }}^{\text {tor }}$ High r

d. When receiving a-m signals the circuit consists basically of a stage of radio frequency amplification, a converter stage, a high frequency oscillator, three stages of intermediate frequency amplification, a second detector, an audio frequency voltage amplifier, a push-pull audio frequency power amplifier, a signal level indicator, an automatic volume control circuit and an automatic noise limiter circuit.
o. When receiving f-m signals the circuit consists basically of a stage of tuned radio frequency amplification, a converter stage, a high frequency oscillator, two stages of intermediate frequency amplification, an amplitude limiter stage, a discriminator, a tuning indicator, an audio frequency voltage amplifier, and a push-pull audio frequency power amplifier.

Reference to the block diagram, figure 2, will illustrate the above oircuit arrangements.

Figure 2. Radio Receiver CHI-46130-C, Blook Diagram

A-3. CIRCUIT DESCRIPTION.- Refer to the schematic diagram, figure 3. Since the circuit functions of bands 1, 2 and 3 are essentially identical this discussion will describe the circuit with the BAND SWITCH ($\mathrm{SW}_{1 \mathrm{~A}}$ to $\mathrm{SW}_{1 \mathrm{G}}$) set at band 3, as shown in the schematic diagram. The BAND SWITCH $\left(S W_{1}\right)$ selects the proper radio frequency, converter, and high frequency oscillator transformers to tune a given frequency range.
a. Signals picked up by the antenna enter the reoeiver through the antenna binding posts on terminal strip TS_{2} (Marked A_{1} and A_{2}.) on the rear apron of the chassis. (Refer to figure 6) The signal is fed to the radio frequency amplifier tube (V_{1}) through the antenna transformer $\left(T_{3}\right)$. The secondary of this transformer (T_{3}) is tuned by capaoitor $C_{1 A}$ and trimmed by capacitor C_{2}.
b. The amplified radio frequency signal at the plate circuit of tube V_{1} is coupled to the control grid of the converter tube $\left(V_{2}\right)$ through the radio frequency transformer T_{6}.
c. Another signal generated in the high frequency oscillator tube $\left(V_{15}\right)$ is fed to the cathode of the tube V_{2} through capacitor C9. These two signals mix and heterodyne within the converter tube $\left(V_{2}\right)$ and produce a third signal the frequency of which is the same as the intermediate frequency amplifier channel band-pass frequency or 5.25 MC . The frequency of the signal generated in the high frequency oscillator tube (V_{15}) is controlled by the high frequency oscillator transformer (T_{9}) which is tuned by oapacitor $\mathrm{C}_{1 C}$. On band \#l the oscillator tunes 5.25 MC . higher in frequency than the received signal frequency and on bands \#2 and \#3 it is 5.25 MC lower in frequency than the incoming signal.
d. A shielded lead from the plate oircuit of the converter tube $\left(V_{2}\right)$ feeds the intermediate frequency signal voltage, through an isolating resistor $\left(R_{71}\right)$, to a panoramic adapter connection. This output connection is an Amphenol type 83-1R coaxial socket. It is located on terminal strip $T S_{2}$, on the rear apron of the ohassis. Refer to figure 6.
e. The intermediate frequency amplifier consists of tubes $\mathrm{V}_{3}, \mathrm{~V}_{4}$ and V_{5} and associated transformers $\mathrm{T}_{10}, \mathrm{~T}_{11}, \mathrm{~T}_{12}$, and T_{13} : The i-f channel band width provided by transformer $\mathrm{T}_{10}, \mathrm{~T}_{11}$, and T_{12} is expended by a third winding, controlled by SELECTIV-

ITY switch $\mathrm{SW}_{7 \mathrm{~A}}$ to 7C. Expanding the i-f amplifier band-pass frequency allows high fidelity $f-m$ reception.
f. The R.F. GAIN control $\left(\mathrm{R}_{11}\right)$, conneoted in series with the cathodes of tubes V_{3} and V_{4} and ground, varies the sensitivity of the receiver by controlling the gain in the first two i-f stages. This is accomplished by varying the self biasing voltage developed by these tubes.
g. The i-f amplifier terminates in two separate detectors, namely the amplitude modulation deteotor and the frequenoy modulation discriminator.
(1) The amplitude modulation ($\mathrm{A}-\mathrm{M}$) detector tube $\left(V_{6}\right)$ is fed by the fourth i-f transformer (T_{13}). The diode load resistor net-work for the first diode section of the tube V_{6} consists of resistors R_{31}, R_{33}, R_{34}, and R_{36}. From this voltage divider network the audio voltage developed is fed to the A.F. GAIN control (R_{43}) through capacitor C_{33} and section $S W_{8 D}$ of the AM/FM switoh. An automatic volume control ($\mathrm{A}-\mathrm{V}-\mathrm{C}$) voltage developed in this same network is applied to the grids of the lst and 2nd intermediate amplifier tubes (V_{3} and V_{4}) through the isolating networks consisting of resistor R_{10} and capacitor C_{12} for the tube V_{3}, resistor R_{19} and capacitor C_{16} for tube V_{4} and resistor R_{35} and capacitor C_{8} for both tubes when the receiver is set for A-M reception. The A.V.C. switoh (SW_{4}) shorts out the a-v-c voltage when automatic volume control is not required. The second diode seotion of the A-M detector tube $\left(V_{6}\right)$ is used as an automatic noise limiter ($\mathrm{A}-\mathrm{N}-\mathrm{L}$), and is aotiviated by switoh SW_{6}. This circuit functions as follows; Capacitor C_{25} becomes charged by the reotified carrier voltage when the A.N.L. switch $\left(\mathrm{SW}_{6}\right)$ is set at ON . The time constant of this capacitor and associated network is such that the audio frequency variations do not alter this charge. However, during a severe noise pulse the cathode of the second diode seotion of tube V_{6} becomes more negative than the oharge held by oapacitor C_{25}, hence, current flows shorting the audio voltage to ground through capacitor C_{25} until the oathode voltage of the $a-n-1$ diode of tube V_{6} reaches a higher negative potential than its plate. By this action noise peaks are clipped off

and do not appear in the output as sudden blasts of noise.
(2) The frequency modulation detector circuit consists of a limiter stage and a discriminator stage. The limiter tube $\left(V_{7}\right)$ is fed by the third i-f transformer $\left(T_{12}\right)$. This stage operates as a saturated amplifier in which the output remains constant over a large range of input levels thus eliminating variations in the amplitude of the received carrier signal. When operating as an $\mathrm{f}-\mathrm{m}$ reoeiver, automatic volume control action is obtained by applying a part of the voltage developed across resistor R_{39} to the control grids of the first and seoond i-f amplifier tubes $\left(V_{3}\right.$ and $\left.V_{4}\right)$ 'through seotion $8 W_{8 A}$ of the F.M./A.M. switch in the same manner as in a-m reception. The constant level output signal from the limiter tube (V_{7}) is fed to the discriminator tube (V_{8}) through the discriminator transformer $\left(T_{14}\right)$ and coupling capacitor C_{29}. The discriminator circuit, consisting of transformer $\left(\mathrm{T}_{14}\right)$, tube V_{8} and load resistor R_{40} and R_{41}, converts the frequency variations in the $f-m$ signal into amplitude variations or an audio signal. The de-emphasis network consisting of a resistor R_{42} and capacitor C32 attenuates the high frequency end of audio range since these frequencies are emphasized at the transmitter. From the de-emphasis network the audio signal is fed to the A.F. GAIN control (R_{43}) in the same way as the signal from the amplitude modulation detector tube $\left(\mathrm{V}_{6}\right)$.
h. The audio amplifier consists of a vol.tage amplifier and phase inverter stage (tube V_{9}) and a push-pull power amplifier stage (tubes V_{11} and V_{12}). The audio signal from either the $a-m$ detector or the $f-m$ discriminator is fed to the control grid of the first triode section of tube (V9) through the A.F. GAIN control (R_{43}) which controls the amount of excitation to the audio amplifier circuit. The amplified audio signal from the first triode section of tube V_{9} is fed to the audio power amplifier tube (V_{12}) and to the second triode section of tube V_{9}. The audio signal on the plate of the second triode section of tube V_{9}, which is now 180° out of phase, is fed to the remaining power amplifier tube V_{11}. The output of the audio power amplifier tubes (V_{11} and V_{12}) is fed to the output terminals through transformer T_{15}, the
secondary of which provides output impedances of 500 ohms, 5000 ohms to ground and 600 ohms balanced to ground. The network consisting of resistors $R_{8}, R_{12}, R_{48}, R_{53}$, R_{54} and R_{69} and capacitors $\mathrm{C}_{34}, \mathrm{C}_{35}$ and C_{39} provide inverse feedback in varying degrees in the audio amplifier tubes to allow tone control ranging from bass boost to high frequency cut off. TONE SWITCH (SWg) selects the desired fidelity.
i. The tuning meter $\left(M_{1}\right)$ is used to indicate correct tuning for both amplitude modulation and frequency modulation reception. It is switched from one circuit to the other by sections $\delta W_{8 B}$ and $S W_{8 C}$ of the A.M./F.M. switch.
(1) When receiving amplitude modulated signals the tuning meter indicates a change in the plate current drawn by the second intermediate amplifier tube $\left(V_{4}\right)$. This tube $\left(V_{4}\right)$ draws maximum current with zero signal level. Current drain decreases with an increase in signal level oausing the meter to fluctuate in accordance with the strength of the received signal. The meter circuit is completed by turning the R.F. GAIN control (R_{11}) full on (to the extreme right hand position). This aotivates switoh SW_{3} which is ganged to the control. When switch SW_{3} is "on" the meter and the METER ADJ. resistor $\left(R_{58}\right)$ are shunted aoross resistor R_{57}).
(2) When receiving frequency modulated signals the meter indicates resonance by indicating the voltage developed across load resistors R_{40} and R_{41}. When the receiver is in exact tune with the received signal the voltages developed across the two load resistors cancel out while detuning the receiver on either side of the inooming signal frequency causes a difference in the voltage developed aoross each resistor which is shown on the meter by a deflection on either side of zero.
j. The beat frequency oscillator stage consists of a triode oscillator tube (V_{14}) and a resonant circuit (L_{5}). The frequency of the oscillator is adjusted to approximately the i-f frequency plus 1000 cyoles by varying the inductance of L_{5} with an adjustable iron slug. B.F.O. switch $\left(\mathrm{SW}_{2}\right)$ activates this circuit by applying plate voltage to tube V_{14}. Capacitor C_{60} varies the pitch of the note to suit the operator.

Figure 4. Radio Receiver CHI-46130-C, Top View Of Chassis

Figure 5. Radio Receiver CHI-46130-C, Bottom View Of Chassis

Figure 6. Radio Receiver CHI-46130-C, Top Rear View
k. The voltage regulator tube $\left(V_{10}\right)$ supplies a constant voltage to the plate and soreen of the mixer tube $\left(V_{2}\right)$, the screen grid of the second i-f amplifier tube (V_{4}) and the plate of the high frequency oscillator tube (V_{15}).

1. Socket SO_{1} provides for operation from an external $d-c$ voltage source. When so operated the heater voltage is supplied directly to the tubes while the plate and screen voltage is applied through the filter network and voltage regulator tube (V_{10} just as when operating from a-c source.

B. InSTALLATION

B-I. CAUTION.- Voltages appearing within the receiver chassis are high and dangerous. Exercise oare in making adjustments. Before making any repairs on the receiver, remove the power cord plug from supply receptaole or disconnect the d-c source from sooket SO_{1}.

B-2. UNPACKING.- Carefully unpack and inspect the receiver for possible damage during transit. Claim for any damage should be made immediately to the transportation carrier.

B-3. INSPECTION.- After the receiver has been unpacked and BEFORE power is applied, cheok the following items:
a. See that the tubes are secure and in their proper sockets. Reference to figure 4 will show their proper looation. The three acorn type tubes are made accessible by removing the shield cover over the r-f section.
b. Check pilot lamps behind the translucent tuning dials. These can be checked by simply raising the cabinet cover.
c. Cheok the line fuse located in the fuse container on the front panel to see that it is in operating order.

B-4. ANTENNA CONNECTIONS.- Three terminals are provided at terminals strip TS_{2} located on the rear apron of the receiver's chassis. Terminals A_{1} and A_{2} are connected to the primary winding of the r-f stage transformers and the GND. terminal is connected to the receiver's ground system. Refer to figure 9 for suggested antenna.
a. Single Wire Antenna.- When receiving with a single wire antenna, connect a jumper between terminals A_{2} and GND. A single wire antenna of about 50 to 75 feet (including lead-in) is then connected to terminal A_{1}. This type of antenna works well where the signal to noise ratio is relatively high and a more elaborate installation is not available. Erect the antenna as high and free fran surrounding objects as possible.
b. Doublet Antenna.- The doublet antenna is recommended where receiving conditions are difficult or where maximum sensitivity is required over a relatively narrow range of frequencies. The transmission line from the antenna is connected to antenna terminals A_{1} and A_{2}. If a concentric line with a grounded outer conductor is used, connect the inner conductor to terminal A_{1}, the outer conductor to terminal A_{2} and connect a jumper between terminals A_{2} and GND. To determine the proper length in inches for the doublet antenna, divide 5540 by the frequency of reception in megacycles. After cutting the wire to the length determined above, out it in half and insert an insulator at that point. Solder the two wires of the transmission line to each of the quarter wave sections at the insulator. Keep in mind that this type of antenna is direotional broadside to its length and should be so oriented if maximum pickup from a certain direction is desired.

B-5. POWER INPUT CIRCUITS.- The receiver is designed to operate from either a 115/230-volt, 50-60 cycle, a-c power source, or from a 6-volt storage battery and $270-\mathrm{vol}$ ts of "B" battery or vibrator supply.
a. A-C Operation.- If the receiver is to be operated from an a-c line, check the setting of the 115/230-volt change-over switch $\left(\mathrm{SW}_{10}\right)$, located on the ohassis deok to the left of the power transformer, and see that it is set for the proper line voltage. Also see that the plug (PL_{2}) on the rear apron of the receiver is in place. This is necessary to provide continuity in the power circuits. Refer to figure 3.
b. D-C Operation.- To operate the receiver from external batteries delivering 6 -volts at 4.5 amperes and 270 -volts at 145 milliamperes (or from a vibrator supply of like capacity), connect plug PL_{2} as shown in figure 7 and insert it in socket SO_{1} in place of the jumper plug used for a-c operation.

B-6. AUDIO OUTPUT CIRCUITS.- A headset or loudspeaker may be used with the receiver.

PIN VIEW
Figure 7. D-C Power Plug Conneotions
a. The headset jack (J_{1}) marked PHONES and located on the front panel provides a 600 ohm outlet for headset operation. Both terminals of this outlet are insulated from ground. By connecting a jumper between the terminals marked 600 OHM C.T. and GND. on terminal strip TS_{1}, located on the rear apron of the chassis, this 600 ohm line may be balanced to ground for other uses.
b. The speaker terminal board (TS_{1}) lo-
cated on the rear apron of the receiver's chassis provides output impedances of 500 and 5000 ohms for loudspeaker operation.

B-7. PANORAMIC ADAPTER.- A coaxial cable connector (SO_{2}) is provided at terminal strip TS2 for connection of a panoramic adapter designed to be used with Model RBK recelving equipment. The panoramic adapter is coupled to the plate circuit of the receiver's converter tube V2 through isolating resist or R71.
B-8. REMOTE STAND-BY OPERATION.- Remote control of the stand-by switch in the receiver can be obtained by removing the jumper wire between pins \#3 and \#4 and connecting leads to pins \#3 and \#4 of either the jumper plug (PL_{2}) used for a-c operation or its substitute plug used for battery operation, and connecting the leads to an external relay or switch. Note: The remote relay or switch must be insulated for high voltage, since this switch is wired into the plate voltage circuit of the receiver.

C. ADJUSTMENT AND OPERATION

C-1. PANEL CONTROLS.- Reading across the front panel from left to right the control markings and functions are as follows: (Refer to figure 1.)
a. R.F. GAIN (radio frequency gain) Control. - It controls the sensitivity of the receiver. Ganged to this control is the " S " meter switch which connects the tuning meter into the circuit when the control is rotated completely to the right.
b. BAND SWITCH. - This switch is used to select the desired frequency range covering the frequencies shown on the main tuning dial.
c. A.V.C. (automatic volume control) Switch.- It switches in a circuit which controls the sensitivity of the receiver. This action provides a more nearly constant audio output level over reasonable variations in signal strength at the antenna.
d. ANTENNA Control. - This control is used to compensate for misaliknment of antenna transformers T_{1}, T_{2} and T_{3} due to antenna impedance variations. Once set for a given antenna its calibration will hold for a wide range of frequencies. Since this capacitor acts as a trimmer for the main tuning capacitor ($C_{1} A$), its use will have a slight detuning effect on the high frequency end of Band 3 and will have to be "touched-up" to retune the desired signal.
e. REC./SEND Switch.- This switch is used to silence the receiver for short periods of time. It connects the high voltage to the receiver circuits when set at REC.
f. SELECTIVITY Switch. - This switch controls the a-c line voltage to the receiver when operating from an a-c power source and in addition sets the band width of the intermediate frequency amplifier stages in its SHARP and BROAD positions.
g. TONE Switch. - It controls a feedback circuit in the audio amplifier stages which allows the audio frequency response to be modified from bass boost through high fidelity to high frequency cut-off.
h. A.N.L. Switch.- This switch cuts in a circuit which will increase the intelligibility of the received signal when a high noise level distorts the signal. The circuit clips the noise peaks in excess of the normal signal level. The switch should be left at OFF when the receiving conditions are normal.
i. TUNING Wheel. This control varies the capacity of capacitor C_{1} which tunes frequency of reception is read directly from the main tuning dial. The scale on the logging dial is used in conjunction with the outer-most scale on the main tuning dial for logging purposes.
j. PHONES Jack. - It is connected to the 600 ohm secondary winding of the output transformer and is insulated from the chassis. It can be used to feed a headset or a 600 ohm line.
k. METER ADJ.- This adjustment is used to set the "S" meter to its "O" signal position when the receiver is set for amplitude modulation reception.

1. PITCH CONTROL.- This control varies the pitch of the $0-\mathrm{w}$ signal for code reception.
m. B.F.O. Switch.- It turns on the beat frequency oscillator, used to produce the beat note for the reception of $0-\mathrm{w}$ (telegraph) signals.
n. A.M./F.M. Switch.- It connects the output of either the a-m detector or the $\mathrm{f}-\mathrm{m}$ discriminator to the audio amplifier and switches the tuning meter from one oirouit to the other.
o. "S" meter or tuning meter.- When the receiver is set to receive amplitude modulated signals the tuning meter indicates the carrier strength of the received signal. To put the meter in operation, turn the R.F. GAIN control to the extreme right until the switoh (SW_{3}) snaps "on". The meter is not used when receiving o-w signals.

When the receiver is set to receive frequency modulated signals the tuning meter is used to indicate resonance with the carrier. As the receiver is tuned through an $\mathrm{f}-\mathrm{m}$ carrier the meter pointer will first deflect to one side of "O", return to "0" and deflect an equal distance on the opposite side of "O", and return to "O". The zero center position in the middle of the swing represents the correct setting of the receiver tuning dial and indicates resonance.
p. The FUSE holder contains a $3 \mathrm{amp} .$, 250 -volt fuse which protects the receiver against accidental overloads.
q. A.F. GAIN Control.- The audio output level of the receiver is controlled by varying the signal level to the grid of the first audio amplifier tube (V_{g}).

C-2. OPERATION.-

a. A.M. SIGNAL RECEPTION.- To receive amplitude modulated signals set the front panel controls as follows:

SELECTIVITY switch - Set at A.C. OFF	
	when the set is not
	in use. Set at

- Set at-REC. Set in SEND position to disable the receivor for short periods.

```
B.F.O. switch PITCH CONTROL TUNING wheel
```

R.F. GAIN control - Turn to right until tuning meter switoh snaps on
ANTENNA trimmer - Adjust for maximum tuning reading
A.F. GAIN control - Adjust for desired signal level at headset or speaker
TONE switch - Set at HIGH FID. or BASS BOOST when signal to noise ratio is high or at NORMAL or LOW when signal to noise ratio is low.
A.N.L. switch - Set at OFF unless background noise is excessive
b. F-M SIGNAL RECEPTION.- To receive frequency modulated signals set the front panel controls as follows:

SELECTIVITY switch -	Set at A.C. OFF
	when set is not in
	use. Set at BROAD

Figure 8. Radio Receiver CHL-46130-C, Top View Showing Alignment Points

TONE switch	- Set at BASS BOOST
or HIGH FID.	

- Set at BASS BOOST or HIGH FID.
A.N.L. switch
- Set at OFF
o. C-W (TELEGRAPH)RECEPTION.- To receive continuous-wave (telegraph) signals set the front panel controls as follows:

SELECTIVITY switch
A.M./F.M. switoh
BAND BWITCH
A.V.C. switoh REC./SEND switoh
B.F.O. switch PITCH CONTROL

TUNING wheel
R.F. GAIN control

OFF is not SHARP for o-w telegraph reception.

- Set a A.M.
- Set to band covering desired frequency
- Set at OFF
- Set at REC. Set in and position when for short periods of time.
- Set at ON
- Adjust to produce approximately a 1000 cycle oode signal. enoy of signal. Tune for maximum signal level at headset or speaker the signal strength of the received signal will allow

ANTENNA trimmer -	Adjust for maximum
	signal level at at

C-3. CALIBRATION AND LOGGING.- The three frequency ranges shown on the main tuning dial are calibrated direotly in megacyoles. The fourth or outside soale on the oalibrated dial is used for logging purposes. The logging scale runs from 1 to 23. Each of the 23 divisions are further divided into 100 parts by the vernier dial scale, located just above the TUNING wheel. The vernier dial makes one revolution as the oalibrated dial moves one division along the logging scale, hence, the log reading will be the calibrated dial log reading followed by a decimal point and the vernier dial reading.

C-4. "S" METER ADJUSTMENT. - With the set turned off check the resting position of the meter. Adjust the screw on the meter face for zero. (Right side of meter face.) Set up the receiver for amplitude modulation reception and set the receiver at a frequency not being used for communications. With zero. signal level and no noise being received set the METER ADV. screw located on the front panel for an "S" meter reading of zero db. (left side of meter scale).

D. ALIGNMENT AND SERVICE

CAUTION - Voltages at various points in the r-f stages and under the chassis are sufficiently high to produce a severe shock. When working on the set avoid contact with the high voltage points and remember, improper or rough handling may disable certain oamponent parts. BE CAREFUL.

D-1. INSPECTION.- All oomponents of the radio set should be given a thorough inspeotion upon issue and at regular intervals thereafter. Keep the equipment dry. Moisture, even in a completely tropioalized set may cause deterioration of material and produce general unsatisfactory operation. Dust and dirt materially effect both electrical and mechanioal operation. Keep the various parts clean especially the tuning capacitors and gear drive. A minute amount of oil in the gear drive occasionally will provide smoother operation. Do not oil the condenser wipers. Noisey reception may be caused by dirty condenser wipers, gain controls, switches loose connections in the
cables, tubes, wiring contacts etc. in the installation. Do not oil any of the switoh oontacts. Cheok aocessable connections and tubes regularly making sure that all contacts are clean and tight and that tubes are held securely in their sookets.

D-2. REPLACING TUBES, LAMPS AND FUSES.- AII tubes with the exception of the three acorn types are accessible at the top of the chassis. The three acorn tubes are reached by removing the top cover of the r-f assembly. These tubes should be inserted with the short end of the body in the socket. The two pilot lamps, $L M_{1}$ and $L M_{2}$, are identical and are located behind the translucent dials. They are of the bayonet type and are removed by pressing down slightly in the socket and turning counter-clockwise. The fuse is replaceable from the front panel. It is contained in the bayonnet type holder that is removed by pressing in slightly and turning counter-clockwise to release.

D-3. ALIGNMENT.-

a. GENERAL.- The receiver has been carefully aligned at the factory and alignment should not be attempted unless it is known that the adjustments have been tampered with or that tubes of a different manufacturer have been substituted. The equipment required to align this receiver will be:
(1) Signal Generator capable of tuning from 5 to 140 MC .
(2) Non-metalic screw driver
(3) 50 ohm non-inductive resistor for a dummy antenna
(4) Output meter.
b. I-F ALIGNMENT.-
(1) Disconnect the grid lead of the 954 converter tube (V_{2}) and connect the signal generator output between the grid and ground. Make the connection with a small clip or wind a piece of flexible wire around the grid terminal, but do not attempt to solder a lead to the terminal as the heat is sure to crack the glass envelope. Connect the output meter to either the headset jack or the speaker terminal board.
(2) Set the controls on the receiver as follows:
(a) R.F. GAIN control at maximum gain.
(b) A.F. GAIN control at maximum gain.
(c) SELECTIVITY switch at SHARP.
(d) AM/FM switch AM.
(e) BAND SWITCH at band \#2
(f) A.V.C. switch at OFF.
(g) SEND/REC. switch at REC.
(h) A.N.L. switch at OFF.
(i) B.F.O. switch at OFF.
(j) TONE control at NORMAL.
(3) Set the signal generator frequency at 5.25 MC . and with the 400 oycle modulation turned on, align transformer T_{10}, T_{11}, T_{12} and T_{13} by adjusting the slug adjustment sorews $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{9}$ and S_{10}. Refer to figure 8. for location of these adjustment screws. A bakelite screw driver with a metal or insulated tip is necessary of accurate alignment.
(4) Repeat the alignment procedure at least once to insure an accurate alignment.
(5) The discriminator transformer T_{14} is aligned as follows:
(A) Set the SELECTIVITY switch at BROAD and FM/AM switch at FM.
(b) With the signal generator set at the 5.25 MC . i-f frequency and with the 400 cycle modulation on, rotate the slug adjustment sorew S_{8} until the signal level read on the output meter drops to zero. This null point is approached very suddenly, therefore, the slug adjustment screw must be turned very slowly. NOTE: The output of the signal generator should be approx. 1000 microvolts for good results. Back off the audio gain slightly if necessary.
(c) Now detune this adjustment slightly so that the output meter gives a readable indication.
(d) Adjust the primary slug adjustment, S_{7}, of the discriminator transformer for maximum response.
(e) Retune the secondary slug adjustment until the output again drops to zero.
(f) Detune the signal generator to a. frequency lower than the i-f frequency until the maximum output point is reached. Note the output meter reading and the frequency deviation from the i-f frequency. (5.25. MC.)
(g) Repeat the procedure above the i-f frequency. The frequency deviation and maximum output should be the same for good balance. If they are not, then tune the signal generator to the lower of the two peaks and adjust the primary slug adjustment, S_{7}, until the output rises an amount equal to about half the difference of the two outputs previously noted.
(h) Retest for balance as above and readjust the primary slug adjustment until both maximum readings are alike when the signal generator is detuned approximately the same amount on either side of resonance (5.25 MC.) If a balance cannot be obtained, it is an indication that the discriminator transformer secondary slug adjust-
ment has been adjusted of f its proper center and will require a very slight readjustment in either direction. The direction of adjustment that will cause the off-time peaks to assume the same values is the correct one. Care must be taken in adjusting the discriminator secondary control as evena very slight misadjustment will result in distortion in frequency modulated signals.
c. B,F.O. ADJUSTMENT.- With the signal generator connected as for i-f alignment above, set the generator's frequency to 5.25 MC. and turn off the 400 cycle modulation. Turn on the receiver's B.F.O. switch and back off the A.F. GAIN control slightly. Adjust the iron core screw on top of coil L_{5} until a 1000 cycle note is obtained in the headset. The headset should replace the output meter for this operation. Note that the 1000 cycle note appears at two settings of this screw. Either setting is useable. It merely means that the oscillator is set 1000 oycles above or below the i-f frequency.
d. R-F ALIGNMENT.- Refer to figure 8 for location of alignment controls.
(1) Connect the signal generator to the antenna terminals A_{1} and A_{2} and wire the dummy antenna resistor (50 ohm noninductive resistor) across the generator terminals. Connect the output meter to the speaker terminals.
(2) Set the controls on the receiver as for i-f amplifier alignment. Refer to paragraph D-3. b. (2).
(3) Turn on 400 cycle tone modulation on the signal generator.
(4) Align the three bands as follows: (a) BAND 1 .

1. Set signal generator and receiver at 45 MC .
2. Adjust trimmer capacitor C_{66} for maximum output. Note that the frequency at which the receiver's oscillator operates on this band, is higher than the signal frequency.
3. Adjust trimmer capacitor C_{63} for maximum output.
4. Set signal generator and receiver at 30 MC .
5. Set padder capacitor C_{58} for maximum output while rocking the tuning control to obtain the optimum setting of the padder.
6. Repeat the above operations for alignment of the high frequency end of the band as desoribed.
7. Check the 40 MC . check point for alignment.
(b) BAND 2.
8. Set signal generator and reoeiver at 80 MC .
9. Adjust trimmer capacitor C_{67} for maximum output. Note that the frequency at which the receiver's oscillator operates on this band is lower than the signal frequency
10. Adjust trimmer capacitor C_{64} for maximum output.
11. No padder capacitor adjustment is provided for the low frequency end of this band.
12. Check the 60 MC. check point for alignment.
(c) BAND 3.
13. Set signal generator and rereceiver at 135 MC .
14. Adjust trimmer capacitor C_{65} for maximum output. Rock the tuning control while making the adjustment to obtain the optimum settings.
15. It is not recommended that the frequency of the oscillator in this band be adjusted except at the factory or at a depot. Should it be impractical to return the receiver to a depot or the factory for adjustment, then make the following adjustments;
a. Remove the top cover of the r-f unit and looate the high frequency osoillator coil T_{9}.

[^0]c. Locate the white cellanese wire on the coil form of transformer T_{9}, and carefully shift its position for maximum output. Note that the frequency at which the receiver's oscillator operates on this band is lower than the signal frequency.
d. Set the signal generator and receiver at 90 MC .
e. Looate the heavy tinned wire on the coil form of transformer T_{9} and carefully shift the turns until maxi-
mum signal output is obtained. Note that this transformer does not have a padding capacitor.
f. Recheck the high frequency end of the band and then cement the windings in place with "Q-Max" or equivalent low loss cement.
g. Set the signal generator and receiver at 135 MC .
h. Reset trimmer capacitor ${ }^{C} 65$ for maximum output.

E. ELECTRICAL AND MECHANICAL DATA

E-1. RESISTANCE CHART.- All measurements were made from the tube socket terminals to ground. The tubes were in their sockets. The power was discomnected from the receiver, all front panel switches were
set at $O N$ and both GAIN controls were turned to their maximum output position. The AM/FM switch was set at A.M. All measurements were made with a Weston Model 772 analyzer.

ACORN TYPE TUBES

TUBE	JAN	PIN							
		G1	G2	G3	P	H	K		
V_{1}	956	very high	8.5	23,000	250	42,000	0	250	
$\mathrm{~V}_{2}$	954	0	0	160,000	0	34,000	very high	2,000	
$\mathrm{~V}_{15}$	955	0	21,500	X	X	38,000	very high	0	

STANDARD TYPE TUBES

TUBE	JAN	PIN							
		1	2	3	4	5	6	7	8
V_{3}	6AC7	0	0	0	$\begin{gathered} \text { over } \\ 500,000 \end{gathered}$	170	75,000	0	30,000
V_{4}	6AB7	0	0	0	$\begin{gathered} \text { over } \\ 500,000 \end{gathered}$	180	34,000	0	30,000
V_{5}	6SK7	0	0	290	$\begin{gathered} \text { over } \\ 500,000 \end{gathered}$	290	22,500	0	31,000
v_{6}	6H6	0	0	$\begin{aligned} & \text { over } \\ & 500,000 \end{aligned}$	0	$\begin{gathered} \text { over } \\ 500,000 \end{gathered}$	NC	0	$\begin{gathered} \text { over } \\ 500,000 \end{gathered}$
V_{7}	6AC7	0	0	0	33,500	0	20,000	0	20,000
V_{8}	6H6	0	0	120,000	240,000	120,000	NC	0	0
V_{9}	6SL7GT	$\begin{gathered} \text { over } \\ 500, \infty 0 \end{gathered}$	295,000	5750	100,000	310,000	5750	0	0
V_{10}	VR-150/30	0	0	33,000	NC	33,000	NC	33,000	NC
V_{11}	6V6GT/G	0	0	30,000	30,000	340,000	NC	0	250
V_{12}	6V6GT/G	0	0	30,000	30,000	340,000	NC	0	250
V_{13}	5U4G	NC	30,000	NC	45	NC	45	NC	30,000
V_{14}	6 J 5	0	0	54,000	NC	50,000	NC	0	0

E-2. VOLTAGE CHART.-All measurements were made from the tube sooket terminals to ground. The tubes were in their sockets. All front panel switches were set at ON (REC.-SEND switch at REC.) and both GAIN controls were turned to their maximum output position. The AM/FM switch was set at AM, the SELECTIVITY switoh at SHARP, and
the BAND SWITCH at \#l position. A jumper was connected across the antenna terminals A_{1}, A_{2} and $G N D$, and a 5000 -ohm 10 -watt resistor was connected across the 5000 ohm speaker terminals to protect the receiver components during this check. All measurements were made with an RCA Volt Ohmyst Junior and with a line voltage of 117-volts.

ACORN TYPE TUBES

TUBE	JAN									
		H	G1	G2	G3	P	H	K		
V_{1}	956	$6.3(\mathrm{a}-\mathrm{c})$	0	100	2.8	160	0	2.8		
$\mathrm{~V}_{2}$	954	0	0	80	4.2	120	$6.3(\mathrm{a}-\mathrm{c})$	4.2		
$\mathrm{~V}_{15}$	955	0	-2.6	X	X	100	$6.3(\mathrm{a}-\mathrm{c})$	0		

STANDARD TYPE TUBES

TUBE	JAN	PIN							
		1	2	3	4	5	6	7	8
V_{3}	6AC7	0	0	0	-3	1.5	180	6.3 (a-c)	260
V_{4}	6AB7	0	0	0	-2. 8	0.8	125	6.3 (a-c)	260
V_{5}	6SK7	0	6.3 (a-c)	4	0	4	100	0	240
V_{6}	6H6	0	0	-5.6	0	-6.8	X	6.3 (a-c)	-5.8
V_{7}	6AC7	0	0	0	-0. 9	0	78	6.3 (a-c)	78
V_{8}	6H6	0	0	-1.0	0	-1.0	X	6.3 (a-c)	0
V_{9}	6SL7GT	0	150	2. 2	0	150	2.2	0	6.3 (a-c)
V_{10}	VR-150/30	NC	0	120	X	120	X	120	NC
V_{11}	6V6GT/G	0	6.3 (a-c)	280	260	0.2	X	0	14
V_{12}	6V6GT/G	0	6.3 (a-c)	260	250	0.2	X	0	14
V_{13}	5U4G	0	300	X	280	X	280	X	300
V_{14}	6J5	0	0	110	X	-7. 8	X	6.3 (a-c)	0
NC - No Connection				X - No pin			* - Tie Lug		

Figure 9. Recommended Antenna Installations

Figure 10. Radio Receiver CHL-46130-C, Outline Dimensional Sketch
F. LISt of replaceable parts - model rbk - ()

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTI ON	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR' S. PART NO.
R_{9}	Resistor, fixed, 10 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, $0.249^{\prime \prime}$ O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2}$ " long; same as $\mathrm{R}_{16}, \mathrm{R}_{26}$	lst I-F band expansion on transformer T_{10}	ASA	RC2IAE100K
R_{10}	Resistor, not a replaceable part. Refer to description of transformer T_{10}. Shown for reference only.	A-V-C decoupling for tube V_{3}	-	-
R_{11}	Resistor, variable 10,000 ohm $\pm 20 \%$, \#8 reversed taper, shaft $1^{\prime \prime}$ long $x \frac{1}{4}$ " dia., 3 solder lug terminals with the variable contact located in the center and the fixed contacts $1-7 / 16^{\prime \prime}$ apart, no taps; includes a toggle action switch (SW_{3}) on rear which closes the circuit when the control is turned to the extreme right (clockwise)		$\begin{gathered} C T \\ \text { type } \\ 135 \end{gathered}$	25C058G
R_{12}	Resistor, fixed 1.0 megohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, $0.1249^{\prime \prime} 0 . \mathrm{D}$. x $0.655^{\prime \prime}$ long, humidity resistant, t wo axial \#21AWG wire leads $1-\frac{1}{2}$ " long	Base boost tone control for tubes V_{11} and $\mathrm{V}_{1,2}$	ASA	RC21AE105K
R_{13}	Resistor, fixed 120 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated $0.249^{\prime \prime}\left(0 . D . x 0.655^{\prime \prime}\right.$ long, humidity resistant, two axial \#21 AWG wire leads $1-\frac{1}{2}$ " long; same as R_{20}	Cathode bias for tube V_{3}	ASA	RC21AE121K
R_{14}	Resistor, fixed, 39,000 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#2lAW wire leads $1-\frac{1}{2}$ " long	Screen voltage dropping for tube V_{3}	ASA	RC21AE3 93K
R_{15}	Resistor, fixed, 330 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, $0.249^{\prime \prime}$ O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#2LAWG wire leads $1-\frac{1}{2}$ " long; same as $\mathrm{R}_{22}, \mathrm{R}_{25}, \mathrm{R}_{62}$	Flate decoupling for tube V_{3}	ASA	RC21AE331K

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
R_{16}	Same as R_{9}	2nd I-F band expansion on transformer T_{11}	-	-
R_{17}	Resistor, fixed, 33 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads l- $\frac{1}{2}$ " long, same as $\mathrm{R}_{18}, \mathrm{R}_{55}, \mathrm{R}_{57}, \mathrm{R}_{65}$	Degeneration for tube V_{3}	ASA	RC21AE330K
R_{18}	Same as R_{17}	Parasitic suppressor for tube V_{5}	-	-
R_{19}	Resistor, not a replaceable part. Refer to description of transformer T_{11}. Shown for reference only.	A-V-C decoupling for tube V_{4}	-	-
R_{20}	Same as R_{13}	Cathode bias for tube V_{4}	-	-
R_{21}	Same as R_{2}	Screen voltage dropping for tube V_{4}	-	-
R_{22}	Same as R_{15}	Plate decoupling for tube V_{4}	-	-
R_{23}	Not used.			
R_{24}	Resistor, fixed, 470,000 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2}$ " long; same as $\mathrm{R}_{35}, \mathrm{R}_{42}, \mathrm{R}_{44}, \mathrm{R}_{45}, \mathrm{R}_{49}, \mathrm{R}_{50}, \mathrm{R}_{56}$	Grid return for tube V_{5}	ASA	RC2LAE474K
R_{25}	Same as R_{15}	Cathode bias for tube V_{5}	-	-
R_{26}	Same as R_{9}	Parasitic suppressor for tube V_{1}	-	-
R_{27}	Same as R_{2}	Plate decoupling for tube ∇_{5}	-	-

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
R_{28}	Resistor, fixed, 7500 ohms $\pm 5 \%, 10$ watt, wire wound, coated with baked vitreous enamel, $3 / 8^{\prime \prime}$ O.D. x l-3/4" long, resistance wire bonded to solder lug at each end to which \#18AWG wire leads $1-3 / 8^{\prime \prime}$ long are attached	Screen voltage dropping for tubes V_{1}, V_{5} and V_{7}	IRC type AB	24BG752D
R_{29}	Same as R_{5}	Screen and plate voltage dropping for tube V_{7}	-	-
R_{30}	Resistor, fixed, 22,000 ohms $\pm 10 \%, 2$ watt, carbon, insulated, 0.342" O.D. x 1.76" long, humidity resistant, two axial \#19AWG wire leads $1-\frac{1}{2}$ " long; same as R_{60}	Screen voltage dropping for tube V_{7}	ASA	RC41AE223K
R_{31}	Resistor, fixed, 47,000 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resisting, two axial \#21AWG wire leads $1-\frac{1}{2} "$ long, same as $\mathrm{R}_{53}, \mathrm{R}_{54}$	Diode load for tube V_{6}.	ASA	RC2LAE473K
R_{32}	Resistor, fixed, 1 megohm $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, $0.249^{\prime \prime}$ O.D. $\times 0.655^{\prime \prime}$ long, humidity resistant, two axial \#21AWG wire leads $1-\frac{1}{2}$ " long	A-N-L load	ASA	RC2LAE105K
R_{33}	Same as R_{7}	Diode load for tube V_{6}	-	-
R_{34}	Resistor, fixed, 220,000 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21 AWG leads $1-\frac{1}{2}$ " long; same as R_{36}, R_{39}	Diode load for tube V_{6}	ASA	RC21AE224K
R_{35}	Same as R_{24}	A-V-C load	-	-
R_{36}	Same as R_{34}	Diode load for tube V_{6}	-	-

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO, } \end{aligned}$	CONTR' S. PART NO.
R_{37}	Resistor, fixed 15,000 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21 AWG wire leads $1-\frac{1}{2}$ " long	Primary load for discriminator transformer T_{14}	ASA	RC21AE153K
R_{38}	Resistor, fixed, 56,000 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, 0.249" O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21 AWG wire leads $1-\frac{1}{2}$ " long	Grid return for tube V_{7}	ASA	RC21AE563K
R_{39}	Same as R_{34}	Grid return for tube V_{7}	-	-
R_{40}	Same as R_{7}	Diode load for tube V_{8}	-	-
R_{41}	Same as R_{7}	Diode load for tube V_{8}	-	-
R_{42}	Same as R_{24}	De-emphasis network for tube V_{8}	-	-
R_{43}	Resistor, variable, 1 megohm $\pm 20 \%$, carbon, \#6 taper, shaft 1 " long $\times \frac{1}{4}$ " dia., 3 solder lug terminals with the variable contact located in the center and the fixed contacts $1-7 / 16^{\prime \prime}$ apart, no taps	A. F. GAIN in to tube V_{9}	$\begin{aligned} & \text { CT } \\ & \text { type } \\ & 125 \end{aligned}$	25 CO 59
${ }_{\mathrm{R}}^{44}$	Same as R_{24}		-	-
$\mathrm{R}^{\mathrm{R}} 45$	Same as R_{24} Resistor, fixed, 4700 ohms $\pm 10 \%$, $\frac{1}{2}$ watt,	Plate load for tube ∇_{9} Cathode bias for tube V_{9}	ASA	RC21AE472K
R_{46}	Resistor, fixed, 4700 ohms $\pm 10 \%$, $\frac{1}{2}$ watt, carbon, insulated, $0.249^{\prime \prime}$ O.D. x $0.655^{\prime \prime}$ long, humidity resistant, two axial \#21 AWG wire leads $1-\frac{1}{2}$ " long; same as R_{47}, R_{63}	Cathode bias for tube V_{9}	ASA	RC21AE472K
R_{47}	Same as R_{46}	Cathode bias for tube V_{9}	-	-
R_{48}	Same as R_{7}	Low tone control for tubes ∇_{11} and V_{12}	-	-
R_{49}	Same as R_{24}	Grid return for tube V_{11}	-	-
R_{50}	Same as R_{24}	Grid return for tube V_{12}	-	-
R_{51}	Same as R_{7}	A-F balancing for tube V_{9}	-	-

F. LIST OF REPLACEABLE PARTS -(Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
R_{52}	Resistor, fixed, 220 ohms $\pm 10 \%$, 2 watt, carbon, insulated, $0.342^{\prime \prime}$ O.D x $1.76^{\prime \prime}$ long humidity resistant, two axial \#19AWG leads $1-\frac{1}{2}$ " long; same as R_{70}	```Cathode bias for tubes }\mp@subsup{V}{11}{ and }\mp@subsup{\nabla}{12}{```	ASA	RC41AE221K
R_{53}	Same as R_{31}	Tone control on tubes V_{11} and V_{12}	-	-
R_{54}	Same as R_{31}	Tone control on tubes V_{11} and V_{12}	-	-
R_{55}	Same as R_{17}	Degeneration for tube V_{4}	-	-
R_{56}	Same as R_{24}	"S" meter current limiting	-	-
R_{57}	Same as R_{17}	"S" meter shunt	-	-
R_{58}	Resistor, variable, 1500 ohms $\pm 20 \%$, wire wound, st. line taper, shaft $3 / 8^{\prime \prime}$ long $\times \frac{1}{4}$ " dia. slotted $1 / 16^{\prime \prime} \times 1 / 16^{\prime \prime}$, 3 solder lug terminals with the variable contact located is the center and the fixed contacts l-7/16" apart, no taps.	R.F. GAIN control on tubes V_{3} and V_{4}	$\begin{aligned} & \text { CT } \\ & \text { type } \\ & 125 \end{aligned}$	25C960
R_{59}	Resistor, fixed, 3300 ohms $\pm 5 \%, 10$ watt, wire wound, coated with baked vitreous enamel 3/8" 0.D. x 1-3/4" long, resistance wire bonded to solder lug at each end to which \#12AWG wire leads $1-3 / 8^{\prime \prime}$ long are attached.	Voltage dropping for tube V_{10}	IRC type AB	24BG332D
R_{60}	Same as R_{30}	Plate decoupling for tube V	-	-
R_{61}	Resistor, not a replaceable part. Refer to description of inductor L_{5}. Shown for reference only.	Grid${ }^{4}$ return for tube V_{14}	-	-

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	1		1	ت̈ $\stackrel{y}{4}$ ぶ	1	¢	1	1	1
	11	年	1	$\text { 甾 }{\underset{\sim}{\circ}}_{\infty}^{\infty}$	1		1	1	1
								$Z_{\Lambda} \text { eqn7 xoj xossexddns ộ̣tsered }$	
							$\begin{aligned} & \infty \\ & \stackrel{1}{0} \\ & \stackrel{1}{\infty} \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { ~ } \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
	ఝ゙	－${ }_{4}^{\text {O }}$	$\mathfrak{\sim}_{1}^{\curvearrowleft}$	\％	0	\％	\％	～운	${ }_{\text {a }}^{\text {－}}$

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{array}{\|c\|} \text { REF. } \\ \text { SYMBOL } \end{array}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
C_{1}	Capacitor, variable, air dielectric, 3 section, 9 plates with double spacing between plates, min. cap, 6 mmfd , max. cap. 547 mmfd ., plates are aluminum, shaft silver plated brass $\frac{1}{2}$ " long x $0.375^{\prime \prime}$ dia., with $\times 2 B$ insulation on stators, front rotor section grounded to frame, other two sections insulated from frame, spade lug mtg., solder lug terminals	Secondary tuning of transformers T_{1} to T_{9} inclusive	$\begin{array}{\|c\|} \hline \text { OM } \\ \text { special } \end{array}$	48 Cl 24
C_{2}	Capacitor, variable, air dielectric, single section, 7 plates, min. cap. 3 mmfd., max. cap. 25 mmfd , aluminum plates, ceramic insulation, brass shaft $3 / 4^{\prime \prime}$ long $x \frac{1}{4}$ " dia., mtg. base $\frac{1}{4}$ " thick $\times 1-7 / 32^{\prime \prime}$ dia., mtg. centers $21 / 32^{\prime \prime}$, total depth of unit $7 / 8^{\prime \prime}$, solder lug terminals	Vernier tuning on secondary of transformers T_{1}, T_{2} and T_{3}	$\begin{gathered} B C \\ \text { type } \\ 22-7 \end{gathered}$	48 A039
C_{3}	Capacitor, fixed, ceramic dielectric, $5.75 \mathrm{mmfd} . \pm 0.75 \mathrm{mmfd}, 500 \mathrm{~V} . \mathrm{D}-\mathrm{C}$ working, temp. coeff. -0.00075 mfd . mmfd. / degree Cent. case $0.625^{\prime \prime}$ long $x 0.225$ dia., two \#22AWG wire leads $1-\frac{1}{2}$ " long, power factor not to exceed 0.1% at 1500 KC	Secondary shunt on transformer T_{1}		47 A 005
C_{4}	Capacitor, fixed, mica dielectric, 2200 $\mathrm{mmfd} . \pm 10 \%, 500 \mathrm{~V}$. D-C working, case $53 / 64$ " long x $53 / 64$ " wide x $9 / 32$ " thick, humidity resistant, two axial \#18AWG wire leads $1-1 / 8^{\prime \prime}$ long; same as $\mathrm{C}_{6}, \mathrm{C}_{52}, \mathrm{C}_{61}$	Cathode by-pass for tube V_{1}	ASA	CM30A222K

F. LIST OF replaceable parts - (Cont'd.)

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
C_{14}	Same as C_{8}	Screen grid by-pass for tube V_{3}	-	-
${ }^{\text {C }}$ 15	Same as C_{8}	Plate by-pass for tube V_{3}	-	-
C_{16}	Capacitor, not a replaceable part. Refer to description of transformer T_{11}.	A-V-C filter for tube V_{3}	-	-
C_{17} C_{18}	$\begin{aligned} & \text { Same as } C_{8} \\ & \text { Same as } C_{8} \end{aligned}$	Cathode by-pass for tube V_{4} Screen grid by-pass for tube V_{4}	-	-
$\begin{aligned} & \mathrm{C}_{19} \\ & \mathrm{C}_{20} \end{aligned}$	Same as C_{8} Capacitor, fixed, mica dielectric, 47 mmfd. $\pm 10 \%$, 500 V . D-C working, case $51 / 64^{\prime \prime}$ long x $15 / 32^{\prime \prime}$ wide x 7/32" thick, humidity resistant, two axial \#2OAWG wire leads $1-1 / 8^{\prime \prime}$ long	Plate return for tube V_{4} Coupling between transformers T_{12} and tube V_{5}	ASA	CM2OA470K
$\begin{aligned} & \mathrm{C}_{21} \\ & \mathrm{C}_{22} \end{aligned}$	Same as C_{8} Same as C_{8} Same as C_{B}	Cathode by-pass for tube V_{5} Screen grid by-pass for tube V_{5} Plate return for tube V_{5}	-	-
C_{24}	Capacitor, fixed, mica dielectric, 56 mmf. $\pm 10 \%$, 500 V . D-C working, case $53 / 64^{\prime \prime}$ long x $53 / 64^{\prime \prime}$ wide x 9/32" thick, humidity resistant, two axial \#18AWG wire leads l-1/8" long; same as C_{26}	Diode return for tube V_{6}	ASA	CM20A560K

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	$\begin{aligned} & \text { n } \\ & \text { O} \\ & \text { ¢ } \\ & \text { H } \end{aligned}$	1	$\begin{aligned} & \text { y } \\ & \text { O } \\ & \text { ત } \\ & \text { N} \\ & \text { N} \end{aligned}$		1	1	$\begin{aligned} & \text { y } \\ & \text { ư } \\ & \text { H } \\ & \text { O } \end{aligned}$
		1	氐	安	1	1	岂
	A－N－L by－pass	$9_{\Lambda} \text { əqn7 доよ дə }$	A-V-C filter	$\begin{aligned} & \mathscr{0} \\ & \stackrel{1}{4} \\ & \ddot{H} \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$			8_{Λ} әqп7 доғ ssed－Кq әрочъел
$\begin{array}{\|l\|l\|} \hline \text { 谷 } \\ \text { 国䍐 } \end{array}$	べ	${ }_{\text {O}}$	へู	N	ベヘ	\％	ल－0

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
${ }^{C} 32$	Capacitor, fixed, mica dielectric, 560 $\mathrm{mmfd} . \pm 10 \%, 500 \mathrm{~V}$. D-C working, case $1-1 / 16^{\prime \prime}$ long $x 15 / 32^{\prime \prime}$ wide $x 7 / 32$ " thick, humidity resistant, two axial \#20AWG wire leads 1-1/8" long	De-emphasis for tube V_{8}	ASA	CM25A561K
${ }^{\text {c }} 33$	Same as C_{8}	Coupling between tubes $\mathrm{V}_{6}, \mathrm{~V}_{8}$ and V_{9}	-	-
${ }^{\text {c }} 3$	Same as C_{8}	Tone control for tubes V_{11} and V_{12}	-	-
${ }^{\text {C }} 35$	Capacitor, fixed, mica dielectric, 1800 mmfd. $\pm 10 \%$, 500 V . D-C working, case $53 / 64$ " long x $53 / 64^{\prime \prime}$ wide x 9/32" thick, humidity resistant, two axial \#18AWG wire leads $1-1 / 8^{\prime \prime}$ long	Tone control for tubes V_{11} and V_{12}	ASA	CM30A182K
C_{36}	Same as C_{8}	Coupling between tubes V_{9} and V_{12}	-	-
C_{37}	Same as C_{8}	Coupling between tubes V_{9} and V_{11}	-	-
C_{38}	Capacitor, fixed, paper dielectric, $20 \mathrm{mfd} .-10+75 \%$, $25 \mathrm{~V} . \mathrm{D}-\mathrm{C}$ working, case hermetically sealed metal $2-1 / 8^{\prime \prime}$ long x $l^{\prime \prime}$ deep x 13/16" high, 2 mtg. feet with $2-1 / 8^{\prime \prime} \mathrm{mtg}$. centers, 2 solder lug terminals insulated from the case	Cathode by-pass for tubes V_{11} and V_{12}	$\begin{aligned} & \text { IC } \\ & \text { type } \\ & \text { IB113 } \end{aligned}$	46A011
C_{39}	Capacitor, fixed, mica dielectric, $150 \mathrm{mmfd} . \pm 10 \%, 500 \mathrm{~V} . \mathrm{D}-\mathrm{C}$ working, case $53 / 64^{\prime \prime}$ square $\times 9 / 32^{\prime \prime}$ thick, humidity resistant, two axial \#l8AWG wire leads $1-1 / 8^{\prime \prime}$ long	Tone control for tubes V_{11} and V_{12}	ASA	CM20A151K

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{array}{\|l\|} \hline \text { MFG. CODE } \\ \text { AND } \\ \text { TYPE NO. } \end{array}$	CONTR' S. PART NO.
C_{40}	Capacitor, fixed, oil-filled paper dielectric, $.5 \mathrm{mfd} .-6+14 \%$, 400 V. D-C working, case hermetically sealed metal 1-13/16" long x $1^{\prime \prime}$ deep $\times 7 / 8^{\prime \prime}$ high, 2 mtg. feet with $2-1 / 8^{\prime \prime} \mathrm{mtg}$. centers, 2 solder lug terminals insulated from the case; built in accordance with U. A. Army Spec. \#71-516 () and Signal Dwgs SCD-512- () and RL-D-6222	Power supply filter	$\begin{gathered} \text { IC } \\ \text { type } \\ \text { 6BA50 } \end{gathered}$	46A050
C_{41}	Same as C_{8}	Coupling between tubes V_{9} and V_{12}	-	-
$\left\{\begin{array}{l}C_{42} \\ C_{43} \\ C_{44}\end{array}\right\}$	Capacitor, fixed, paper dielectric, triple unit; unit \#l is 4 mfd .650 Vr D-C working $\left(C_{42}\right)$, unit \#2 is 8 mfd .650 V . D-C working $\left(\mathrm{C}_{43}\right)$, unit \#3 is 8 mfd .650 V . D-C working (C_{44}); hermetically sealed metal case $4-\frac{1}{2}{ }^{\prime \prime}$ long $x 2-\frac{1}{2}$ " deep x $5-7 / 16^{\prime \prime}$ high, 2 mtg. feet with $4-3 / 4^{\prime \prime} \times$ $2^{\prime \prime}$ mtg. centers, 4 solder lug terminals (one common to all units) insulated from the case by bakelite and neoprene washers, terminals marked "8", "4", "6"	Power Supply filter	$\begin{aligned} & \text { IC } \\ & \text { type } \\ & 7392 \mathrm{E} \end{aligned}$	42 BO 43
C_{45}	Same as C_{5}	Heater by-pass for tube ∇_{15}	-	-
${ }^{\text {C }} 46$	Same as C_{5}	Heater by-pass for tube V_{2}	-	-
${ }_{4}$	Same as C_{5}	Heater by-pass for tube V_{1}	-	-
C_{48}	Capacitors not a replaceable part. Part of line filter LF 1 . Shown for reference only.	Power line filter in LF_{1}	-	-
${ }^{\text {C }} 49$	Same as C_{48}	Power line filter in LF_{1}	-	-
C_{50}	Same as C_{48}	Power line filter in LF_{1}	-	-
C_{51}	Same as C_{48}	Power line filter in LF_{1}	-	-

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

REF. SYMBOL	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR' S . PART NO.
$\begin{aligned} & C_{52} \\ & C_{53} \end{aligned}$	```Same as C4 Capacitor, not a replaceable part. Refer to description of inductor I}\mp@subsup{I}{5}{}\mathrm{ . Shown for reference only.```	Plate decoupling for tube V_{14}	-	-
C_{54}	Capacitor, not a replaceable part. Refer to description of inductor L_{5}. Show for reference only.	B-F-0 tuning on L_{5}	-	-
${ }^{\text {c }} 5$	Same as C_{5}	Plate decoupling for tube V_{15}	-	
${ }^{\text {c }} 5$	Capacitor, fixed, ceramic dielectric, $50 \mathrm{mmfd} . \pm 10 \%, 500 \mathrm{~V} . \mathrm{D}-\mathrm{C}$ working, temp. coeff. $-0.00075 \mathrm{mmfd} . / \mathrm{mmfd} . /$ deg. Cent., case $0.625^{\prime \prime}$ long $x 0.225^{\prime \prime}$ dia., two \#22AWG wire leads $1-\frac{1}{2} "$ long, power factor not to exceed 0.1% at 1500 KC	Plate blocking for tube V_{15}	$\begin{gathered} \text { CRL } \\ \text { type } \\ 812-109 \end{gathered}$	47A025
C_{57}	Capacitor, fixed, mica dielectric, 1000 $\mathrm{mmfd} . \pm 10 \%, 500 \mathrm{~V}$. D-C working, case $1-1 / 16^{\prime \prime}$ long $x 15 / 32 "$ wide $x 7 / 32^{\prime \prime}$ thick, humidity resistant, two axial \#20AWG wire leads $1-1 / 8^{\prime \prime}$ long	Grid coupling for tube V_{15}	ASA	CM25Al02K
C_{58}	Capacitor, adjustable, mica dielectric, $450 \mathrm{mmfd} . \pm 10 \%$, adjustable, bakelite mtg. insulation, 2 solder lug terminals to which are attached \#18AWG tinned copper leads $l^{\prime \prime}$ long, both leads insulated from the frame, special L shaped mtg. frame $1^{\prime \prime} \times 7 / 8^{\prime \prime} \times 1^{\prime \prime}$ octagon condenser frame $3 / 4^{\prime \prime}$ dia.	Padder for transformer T_{7}	UE type S81A	44A050

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	1				1	1	O－1 O ¢ ＋
	1			$1 \text { 啇唄 }$	1		$\text { 录 } \stackrel{\leftrightarrow}{4}_{\infty}^{\infty}$
					$\begin{aligned} & 08 \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
	อٌ	0°	${ }_{0}^{\text {－10 }}$	Ni8	\％	0_{0}^{8}	8

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
Z 0 0 0 号							
	$\overbrace{0}^{\circ}$	0_{0}^{∞}	$\overbrace{0}^{\circ}$	$\overbrace{\hat{N}}^{\sim}$	$\text { N゙~ }_{\text {EN }}^{n}$	$\overbrace{\hat{0}}^{\hat{v}}$	$\stackrel{\infty}{\sim}$

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR' ${ }^{\circ}$. PART NO.
C_{79}	Capacitor, fixed, mica dielectric, 330 mmfd. $\pm 10 \%, 500 \mathrm{~V}$. D-C working, case $53 / 64^{\prime \prime}$ square x 9/32" thick, humidity resistant, two axial \#2OAWG wire leads $1-1 / 8^{\prime \prime}$ long	A-F balance for transformer T_{15}	ASA	CM20A331K
L_{1}	Inductor, R-F, 75 turns of \#38SCE single layer winding, inductance 15.5 microhenries $\pm 10 \%$, d-c resistance 4.10 ohms $\pm 3 \%$, wound on molded bakelite coil form $15 / 16^{\prime \prime}$ long $x 5 / 32^{\prime \prime}$ dia., coated with Chinese red lacquer, 2 axial \#20 AWG wire leads $1-\frac{1}{2}$ " long, air core	Plate choke for tube V_{15}	$\begin{aligned} & \text { SWI } \\ & \text { type } \\ & 661 \end{aligned}$	53A008
L_{2}	Inductor, not a replaceable part. Refer to description of line filter LF_{1}. Shown for reference only	Power line filter choke	-	-
L_{3}	Same as L_{2}	Power line filter choke	-	-
L_{4}	Inductor, R-F, 42 turns of \#28SCE single layer winding, inductance 4.20 microhenries $\pm 10 \%$, d-c resistance 0.25 ohms $\pm 70 \%$, wound on molded bakelite coil form $7 / 8^{\prime \prime}$ long $x 9 / 32^{\prime \prime}$ dia., coated with Chinese blue lacquer, 2 axial \#20 AWG wire leads $1-\frac{1}{2}$ " long, air core	Choke for heater of tube V_{15}	SWI type 662	53A009

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	$\begin{aligned} & \text { H } \\ & \text { O} \\ & \text { OH} \\ & \text { Ĥ } \end{aligned}$
	寝
$\begin{aligned} & \text { 各 } \\ & \text { 皆 } \\ & \text { B } \end{aligned}$	
	～

F. LISt of replaceable parts - (Cont'd.)

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

REF. SYMBOL	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR' S. PART NO.
T_{1}	Transformer, R-F, 27.8 to 47 megacycles, one primary and one secondary winding; primary l- $\frac{1}{2}$ turns of \#30SCE single layer winding with a Q at 85 of 44 megacycles with 96.8 micro-microfarads, secondary 5 turns of \#22 D cel. single layer winding with a Q of 163 at 26 megacycles with 93.5 micro-microfarads; air cores, coils wound on a xx bakelite tube $1-5 / 8^{\prime \prime}$ long $x \frac{1}{2}$ " O.D. $x 3 / 8^{\prime \prime}$ I. D., solder lug terminals	Coupling between antenna and grid of tube V_{1} for band 1	$\begin{aligned} & \text { SWI } \\ & \text { type } \\ & 651 \end{aligned}$	51A265
T_{2}	Transformer, R-F, 46 to 82 megacycles, one primary and one secondary winding; primary $1-\frac{1}{2}$ turns of \#30SCE single layer winding with a Q of 67 at 45 megacycles with 105 micro-microfarads, secondary 1-7/8 turns of \#18 D cel. braid single layer winding with a Q of 158 at 45 megacycles with 99 micro-microfarads; air cores, coils wound on a bakelite tube $1-5 / 8^{\prime \prime}$ long $x \frac{1}{2}$ " O.D. $x 3 / 8^{\prime \prime}$ I. D., solder lug terminals	Coupling between antenna and grid of tube V_{1} for band 2	$\begin{aligned} & \text { SWI } \\ & \text { type } \\ & 654 \end{aligned}$	51A268
T_{3}	Transformer, R-F, 82 to 143 megacycles, one primary and one secondary winding; primary $3-\frac{1}{4}$ turns of \#28 braided cel. single layer winding with a Q of 98 to 35 megacycles with 85.3 micro-microfarads, secondary $1-\frac{1}{4}$ turns of \#14 solid copper single layer winding with a Q of 185 at 70 megacycles with 95.7 mi cro-microfarads; air cores, coils wound on a solid form $3 / 4^{\prime \prime}$ long $x \frac{1}{4}$ " dia., extended coil winding leads for terminals	Coupling between antenna and grid of tube V_{1} for band 3	SWI type 657	51 A 271

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
T_{4}	Transformer, R-F, 27.8 to 47 megacycles, one primary and one secondary winding; primary $28-\frac{1}{2}$ turns of \#34SCE single layer winding with a Q of 89 at 5 megacycles with 94 micro-microfarads, secondary $5-\frac{1}{2}$ turns of \#22 D cel. braid with a Q of 161 at 25 megacycles with 95 micromicrofarads; air cores, coils wound on a bakelite tube l-5/8" long $x \frac{1}{2}$ " O.D. x $3 / 8^{\prime \prime}$ I. D. solder lug terminals	Coupling between tubes V_{1} and V_{2} for b and 1	$\begin{aligned} & \text { SWI } \\ & \text { type } \\ & 652 \end{aligned}$	51A266
T_{5}	Transformer, R-F. 46 to 82 megacycles, one primary and one secondary winding; primary ll- $\frac{1}{2}$ turns of \#34SCE single layer winding with a Q of 83 at 10 megacycles with 94 micro-microfarads (wound counterclockwise), secondary 2-1/8 turns of \#18 D cel. braid single layer winding with a Q of 173 at 45 megacycles with 85 micromicrofarads (wound clockwise); air cores, coils wound on a bakelite tube 1-5/8" long $x \frac{1}{2}$ " O.D. x 3/8" I.D. solder lug terminals	Coupling between tubes V_{1} and V_{2} for band 2	$\begin{aligned} & \text { SWI } \\ & \text { type } \\ & 655 \end{aligned}$	51A269
T_{6}	Transformer, R-F, 82 to 143 megacycles, one secondary winding; primary $8-\frac{1}{4}$ turns of \#36SCE single layer winding with a Q of 69 at 18 megacycles with 91 micro-microfarads, secondary $1-3 / 4^{\prime \prime}$ turns of \#14 solid copper single layer winding with a Q of 173 at 65 megacycles with 92.5 micromicrofarads; air cores, coils are wound on a solid bakelite from $7 / 8^{\prime \prime}$ long $x \frac{1}{4}$ " dia., extended coil winding leads for terminals	Coupling between tubes V_{1} and V_{2} for band 3	$\begin{aligned} & \text { SWI } \\ & \text { type } \\ & 658 \end{aligned}$	51A272

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

REF. SYMBOL	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	$\begin{aligned} & \text { CONTR'S. } \\ & \text { PART NO. } \end{aligned}$
T_{7}	Transformer, R-F, 27.8 to 47 megacycles, one primary and two secondary windings; primary $1-3 / 4$ turns of \#34SCE with a Q of 63 at 40 megacycles with 93 micro-microfarads, first secondary 4-1/8 turns of \#22 D cel. braid with a Q of 160 at 30 megacycles with 89 micro-microfarads, second secondary $2-\frac{1}{2}$ turns of \#30DCE with a Q of 96 at 35 megacycles with 86 micro-microfarads; air cores, coils are wound on a bakelite tube $1-5 / 8^{\prime \prime}$ long $\times \frac{1_{2}^{\prime \prime}}{\prime \prime} 0$. D. solder lug terminals	Tuned circuit of oscillator stage for band 1	SWI type 653	51A267
T_{8}	Transformer, R-F, 46 to 82 megacycles, one primary and two secondary windings; primary $3 / 4$ turn of \#30S cel. braid with a Q of 92 at 50 megacycles with 104 micro-microfarads, first secondary $2-\frac{1}{2}$ turns of \#18D cel. braid with a Q of 176 at 40 megacycles with 92 micro-microfarads; second secondary $\frac{1}{2}$ turn of \#22D cel. braid with a Q of 157 at 60 megacycles with 89 micro-microfarads; air cores, coils are wound on a bakelite tube 1-5/8" long $x \frac{1}{2}$ " O.D. x solder lug terminals	```Tuned circuit of oscillator stage for band 2```	SWI type 656	51A270
T_{9}	Transformer, R-F, 82 to 143 megacycles, two primary and two secondary windings; first primary 9/16 turn of \#26S cel., second primary 9/16 turn of \#26 plain enamel, each primary has a Q of 88 at 44 megacycles with 97.3 micro-microfarads, first secondary $1-\frac{1}{2}$ turns of \#l6 bare copper wire with a Q of 119 at 60 megacycles with 95 micro-microfarads, second secondary 2 turns of \#28D cel. braid with a Q of 115 at 60 megacycles with 97 micro-microfarads; air core, coils are wound on $x x$ bakelite tube $1-5 / 8^{\prime \prime}$ long x $3 / 8^{\prime \prime}$ dia., one solder lug and extended coil winding leads provide terminals	Tuned circuit of oscillator st age for band 3	SWI type 659	51A273

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	O
$\begin{aligned} & \text { Z } \\ & \text { 足 } \\ & \text { 足 } \end{aligned}$	Coupling between tubes V_{2} and V_{3}
閿兌	－1－1

F．LIST OF REPLACEABLE PARTS－（Cont＇d．）

	H
$\begin{aligned} & \text { 望 } \\ & \text { 号 } \\ & \text { 号是思 } \\ & \text { 思 } \end{aligned}$	
	$\text { Coupling between tubes } V_{3} \text { and } V_{4}$
	$\stackrel{\text { F̈r }}{ }$

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	$\begin{aligned} & \text { CONTR'S } \\ & \text { PART NO. } \end{aligned}$
T_{12}	working for secondary; a fixed resistor (R_{19}) 100,000 ohm, $\frac{1}{4}$ watt, within the shield can, and a fixed capacitor (C_{16}) 1000 mmfd. 300 V. D-C working connected between terminal \#8 and ground lug at base of unit complete the assembly; aluminum shield can $4^{\prime \prime}$ high x l-7/8" lons x 1-7/16" wide with 4 spade lugs centered one on each side of shield mounted 9/32" from base, top has a $\frac{1}{2}$ " dia. hole centered and 4 holes $0.144^{\prime \prime}$ dia. centered by pairs at right angles to each other and to the sides of the shield with $29 / 32^{\prime \prime}$ and $13 / 16^{\prime \prime} \mathrm{mtg}$. centers; solder lug terminals at the base numbered 1 thru 8 provide connections. Transformer, intermediate-frequency, 5.24 megacycles; one primary and three secondary windings; primary $16 \frac{1}{2}$ turns single layer winding or adjustable polyiron core assembly; first secondary $1 \frac{1}{2}$ turns winding on same form as primary; second secondary $20 \frac{1}{2}$ turns single layer winding on adjustable polyiron core assembly; third secondary $2 \frac{1}{2}$ turns winding on same form as second secondary; coil forms black bakelite $3-21 / 64^{\prime \prime}$ long $x \frac{1}{2}$ " dia. with iron cores adjusted by brass bolts threaded 6-32 notched for screw driver; coil forms mounted at base to a black bakelite board 7/32" thick x 1-25/32" long $\times 1-3 / 8^{\prime \prime}$ wide; and at the top to a black bakelite board $5 / 32^{\prime \prime}$ thick x 1-17/32" long x $1-1 / 8^{\prime \prime}$ wide; additional	Coupling between tubes V_{4} and V_{5}	$\begin{gathered} \text { EW } \\ \text { Special } \end{gathered}$	50C142

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYFE NO. } \end{aligned}$	$\begin{aligned} & \text { CONTR'S } \\ & \text { PART NO. } \end{aligned}$
T_{13}	support is had by two brass brackets 3.32 " long $x \frac{1}{4}$ " wide bent at each end at right angles to form a $\frac{1}{4} n_{1}$ square mtg. surface with a hole $0.145^{\prime \prime}$ (dia. extruded and tapped 6-32 NC 2; a fixed ceramic trimmer capacitor (C_{72}) $100 \mathrm{mmfd} ., 300 \mathrm{~V}$. D-C working for primary, a fixed ceramic trimmer capacitor (C_{73}) for secondary within the shield can complete the assembly; aluminum shield can $4^{\prime \prime}\left(\right.$ high $x 1-7 / 8^{\prime \prime}$ long x l-7/16" wide with 4 spade lugs centered one on each side of shield mounted $9 / 32^{\prime \prime}$ from base, top has a $\frac{1}{2}$ " dia. hole centered and 4 holes $0.144^{\prime \prime}$ dia. centered by pairs at right angles to each other and sides of shield with 29/32" and $13 / 16^{\prime \prime}$ centers; solder lug terminals at base numbered 1 thru 8 provide connections Transformer, intermediate-frequency, 5. 25 megacycles; one primary and one secondary winding; primary $17 \frac{1}{2}$ turns single layer winding on adjustable polyiron core assembly; secondary $17 \frac{1}{2}$ turns single layer winding, then spaced and continued for $7 \frac{1}{2}$ turns more for a total of 25 turns on adjustable polyiron core assembly; coil forms black bakelite 3-21/64" long x $\frac{1}{2}$ " dia. with iron cores adjusted by brass bolts threaded 6-32 notched for screw driver; coil forms mounted at base to a black bakelite board 7/32" thick x 1-25/32" long x $1-3 / \mathrm{E}^{\prime \prime}$ wide and at top to a black bakelite board $5 / 32^{\prime \prime}$ thick x $1-17 / 32^{\prime \prime}$ long $x 1-1 / \varepsilon^{\prime \prime}$ wide; additional	Coupling between tubes V_{5} and V_{6}	$\begin{gathered} \text { EW } \\ \text { Special } \end{gathered}$	$50 C 143$

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

	W - O O
$\begin{aligned} & \text { Z } \\ & \text { 曷 } \\ & 2 \\ & 2 \end{aligned}$	Coupling between tubes V_{7} and V_{8}
	$\stackrel{\text { H }}{\text { H }}$

F. LIST OF REPLACEABLE PARTS (Cont'd.)

	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { مٌ } \end{aligned}$
K 氝 2 号	
	$\stackrel{\sim}{\sim}$

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{gathered} \text { REF. } \\ \text { SYMBOL } \end{gathered}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR' S. PART NO.
${ }^{\mathrm{T}} 16$	Transformer, power; primary 2 section winding connected in parallel for 115 V. A-C, and connected in series for 230 V. A-C operation, $50 / 60$ cycles, single phase; first secondary center tapped to provide 270 V. D-C @150 milliamperes across 10 mfd. capacitor and a 2 henry 85 ohm choke with a 5 U4G rectifier tube; second secondary 6.4 V . A-C @4 amperes; third secondary 5 V. A-C 33 amperes, hermetically sealed case $4-15 / 16^{\prime \prime}$ long $x 3-3 / 4^{\prime \prime}$ deep x $5-5 / 16^{\prime \prime}$ high spot welded at all joints, coil and core assemblies bolted to brackets spot welded to case, vacuum impregnated, mounted by 4 lugs at base with $3-5 / 8^{\prime \prime} \times 2-3 / 8^{\prime \prime} \mathrm{mtg}$. centers; 4 terminals threaded 8-32 NC-2 connected to primary as follows; 1 and 3 to one section of primary, 2 and 4 to other section of primary; 7 solder lug terminals connected as follows; 5 and 6 connect to secondary \#2 (6.4 V. A-C), 7 and 8 connect to secondary \#3 (5 V. A-C), 9 and Il connect to secondary \#l (540 V. D-C), 10 is center tap for secondary \#l and ground for transformer case and core, iron core; breakdown voltages as follows between windings and core and case; primary - 1500 V. RMS, secondary \#l-2500 V- RMS, secondary \#2-1500 V. RMS. secondary \#3-2500 V. RMS.	A-C power transformer	ST type 10P51	52C084

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{aligned} & \text { REF. } \\ & \text { SYMBOL } \end{aligned}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR'S. PART NO.
$\left\{\begin{array}{l}\mathrm{SW}_{8 A} \\ \mathrm{SW}_{8 B} \\ \mathrm{SW}_{8 C} \\ \mathrm{SW}_{8 \mathrm{C}}\end{array}\right\}$	Switch, rotary selector, single section 2 position, all metal parts silver plated brass except for stainless steel index spring and ball, vacuum wax impregnated phenolic wafer, non shorting teeth at contacts 5 and 8 , frame $5 / 16^{\prime \prime}$ long, mounts by $3 / 8-32$ bushing $\frac{1}{2}$ " long, shaft $1^{\prime \prime}$ long $x \frac{1}{4}$ " dia.	A.M. /F.M. selection	OM type QH	60Al77
SW_{9}	Switch, rotary selector, single section 4 position, all metal parts phosphor bronze, vacuum wax impregnated bakelite wafer, shorting type rotor contact,over all dimensions excluding solder lug terminals $1-\frac{1}{2}{ }^{\prime \prime} \times 1-5 / 32^{\prime \prime}$, mounts by 3/8-32 bushing $\frac{1}{2}{ }^{\prime \prime}$ long, shaft $\frac{1}{4}$ " dia.	TONE switching	$\begin{gathered} \text { CRL } \\ \text { type } \\ \text { BFX7360X } \end{gathered}$	$60 \mathrm{Bl76}$
SW_{10}	Switch, toggle, DPDT, rated 3 amperes @250 V., $1-3 / 4^{\prime \prime}$ long x $21 / 32^{\prime \prime}$ wide $\times 5 / 8^{\prime \prime}$ deep, mounted by bushir: $13 / 32^{\prime \prime}$ long threaded 15/32-32, solder lug contacts	115/230 volt A-C change over	HH	60A090
J_{1}	Jack, phone, switching-one make one break, steel frame, silver contacts, rubber and bakelite insulation, mounted by 3/8-32 brass bushing $\frac{1}{2}$ " long, frame dimensions $1-19 / 32^{\prime \prime} \times 27 / 32^{\prime \prime} \times 3 / 4^{\prime \prime}$, solder lug contacts, $l^{\prime \prime}$ from front of bushing to tip contact	600 ohm ungrounded phone output	$\begin{gathered} \text { U } \\ \text { type } \\ \text { ST-687 } \\ \text { modified } \end{gathered}$	36B008

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

REF. SYMBOL	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \hline \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \\ & \hline \end{aligned}$	CONTR' S. PART NO.
SO_{1}	Socket, octal, female, high dielectric mica filled bakelite body 1-7/64" dia. x 31/64" thick, silver plated phosphor bronze solder lugs, molded on steel mtg. plate l-9/32" wide $\times 0.031$ thick having 2 mtg . holes of $5 / 32^{\prime \prime}$ dia. $\times 1-\frac{1}{2}$ " mtg. centers, pins are numbered on back of socket clockwise from locating pin	D-C power input and remote stand-by connection	AP type MIP8TM	6A200
SO_{2}	Socket, not a replaceable part. Refer to description of Terminal Strip TS_{1}. Shown for reference only	Panoramic Adapter Socket	-	-
PL_{1}	Plug and line cord assembly, 2 conductor \#18 type S-J all rubber covered cord 6 feet long with a spring type (allied type 371) molded on plug at one end and stripped and tinned for $5 / 8^{\prime \prime}$ at the other end	A-C power line connection	$\begin{aligned} & \text { B } \\ & \text { type } \\ & 1750 \end{aligned}$	87A125
PL_{2}	Plug, octal, male bakelite body $1-\frac{1}{4}{ }^{\prime \prime}$ O. D. x 7/16" thick, metal contact prongs 7/16" long, supplied with insulated jumpers between contacts 3 and 4, and contacts 6 and 7	Shorting plug for A-C operating and remote stand-by connection	AP type CP-8	35A003
FS_{1}	Fuse, 3 amperes @250 V., type 4AG, glass enclosed, $1-\frac{1}{4}$ " long x 9/32" dia., caps nickle plated copper alloy, carries 110% of rated current, vibration factor is 200	Power transformer primary protection	LF type 1093	39 A 318

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

| REF.
 SYMBOL | NAME AND DESCRIPTION |
| :--- | :---: | :--- | :--- | :--- |

F. LIST OF REPLACEABLE PARTS - (Cont'd.)

$\begin{array}{\|l\|} \hline \text { REF. } \\ \text { SYMBOL } \end{array}$	NAME AND DESCRIPTION	FUNCTION	$\begin{aligned} & \text { MFG. CODE } \\ & \text { AND } \\ & \text { TYPE NO. } \end{aligned}$	CONTR' S. PART NO.
V_{2}	Tube, acorn pentode	Converter-mixer	RCA type 954	90×954
v_{3}	Tube, R-F pentode; same as V_{7}	lst I-F amplifier	RCA type 6AC7	$90 \times 6 \mathrm{AC7}$
V_{4}	Tube, R-F pentode	2nd I-F amplifier	RCA type 6 AB7	$90 \times 6 \mathrm{AB7}$
V_{5}	Tube, R-F pentode	3rd I-F amplifier	RCA type 6SK7	90X6SK7
V_{6}	Tube, double diode; same as V_{8}	A-M second detector	RCA type 6H6	90X6H6
V_{7}	Same as V_{3}	F-M limiter	-	-
	Same as V_{6}		-	
V_{9}	Tube, duo-triode	Audio voltage amplifier	RCA type 6SL7GT	90X6SL7GT
V_{10}	Tube, gas filled diode	Voltage regulator	$\begin{gathered} \text { RCA } \\ \text { type } \\ \text { VR-150/30 } \end{gathered}$	$\begin{aligned} & 90 \text { XVR- } \\ & 150 / 30 \end{aligned}$
V_{11}	Tube, beam power amplifier; same as V_{12}	Audio power amplifier	$\begin{gathered} \text { RCA } \\ \text { type } \\ \text { 6V6GT/G } \end{gathered}$	90X6V6GT/G
∇_{12}	Same as V_{11}	Audio power amplifier		
v_{13}	Tube, full wave diode	Plate supply rectifier	RCA type 5U4G	90X5U4G
V_{14}	Tube, triode amplifier	Beat frequency oscillator	RCA type 655	90X6U5
V_{15}	Tube, acorn triode	High frequency oscillator	RCA type 955	90X955

SYMBOL
MANUFACTURED
AP American Phenolic Corp. Chicago, Illinois

ASA Any manufacturer meeting the applicable American Standards Association specifications.

B Belden Mfg. Co.
Chicago, Illinois
BC Brenner Chemical Co.
Chicago, Illinois
CH Cutler-Hammer
Milwaukee, Wis.
CRL Centralab
Milwaukee, Wis.
CT Chicago Telephone \& Supply Co. Elkhart, Indiana

ER Erie Resistor
Erie, Pa.
EW Electronic Winding Corp. Chicago, Illinois

GE General Electric Co. Schenectady, N.Y.

H The Hallicrafters Co. Chicago, Illinois

HH Hart \& Hegeman Electric Co. Hart ford, Conn.

SYMBOL MANUFACTURED
IC Industrial Condenser Chicago, Illinois

International Resistance Co. Philadelphia, Pa.

LF Littlefuse, Inc. Chicago, Illinois

MCM McClintock Meter Co. Minneapolis, Minn.

MN

OM Oak Manufacturing Co. Chicago, Illinois

RC Radio Condenser Corp. Chicaso, Illinois

RCA RCA Manufacturing Co., Inc., Camden, N.J.

ST St andard Transformer Corp. Chicago, Illinois

SWI S.W. Inductor Co. Chicago, Illinois

Underwood Electric Co. Chicago, Illinois

[^0]: b. Set the signal generator and receiver at 135 MC .

